IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v115y2019icp131-145.html
   My bibliography  Save this article

Limits of correlation in repeated games with bounded memory

Author

Listed:
  • Bavly, Gilad
  • Peretz, Ron

Abstract

We study repeated games in which each player i is restricted to (mixtures of) strategies that can recall up to ki stages of history. Characterizing the set of equilibrium payoffs boils down to identifying the individually rational level (“punishment level”) of each player.

Suggested Citation

  • Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
  • Handle: RePEc:eee:gamebe:v:115:y:2019:i:c:p:131-145
    DOI: 10.1016/j.geb.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825619300387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2019.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Tristan Tomala & Jerome Renault & Marco Scarsini, 2007. "A Minority Game with Bounded Recall," Post-Print hal-00538967, HAL.
    3. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    5. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
    6. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
    7. Aumann, Robert J. & Sorin, Sylvain, 1989. "Cooperation and bounded recall," Games and Economic Behavior, Elsevier, vol. 1(1), pages 5-39, March.
    8. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    9. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    10. repec:dau:papers:123456789/6381 is not listed on IDEAS
    11. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
    12. Peretz, Ron, 2012. "The strategic value of recall," Games and Economic Behavior, Elsevier, vol. 74(1), pages 332-351.
    13. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Post-Print hal-00487954, HAL.
    14. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    15. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    16. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    17. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    18. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    19. Lehrer, Ehud, 1988. "Repeated games with stationary bounded recall strategies," Journal of Economic Theory, Elsevier, vol. 46(1), pages 130-144, October.
    20. Lehrer, Ehud & Solan, Eilon, 2009. "Approachability with bounded memory," Games and Economic Behavior, Elsevier, vol. 66(2), pages 995-1004, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halpern, Joseph Y. & Pass, Rafael & Seeman, Lior, 2019. "The truth behind the myth of the Folk theorem," Games and Economic Behavior, Elsevier, vol. 117(C), pages 479-498.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    2. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    3. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    4. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    5. Ron Peretz, 2011. "Correlation through Bounded Recall Strategies," Discussion Paper Series dp579, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    7. René Levínský & Abraham Neyman & Miroslav Zelený, 2020. "Should I remember more than you? Best responses to factored strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1105-1124, December.
    8. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    9. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    11. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
    12. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    13. repec:dau:papers:123456789/6127 is not listed on IDEAS
    14. Abraham Neyman & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall," Levine's Bibliography 122247000000000920, UCLA Department of Economics.
    15. Andriy Zapechelnyuk, 2008. "Better-Reply Dynamics with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 869-879, November.
    16. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
    18. Peretz, Ron, 2012. "The strategic value of recall," Games and Economic Behavior, Elsevier, vol. 74(1), pages 332-351.
    19. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Gilboa Itzhak & Schmeidler David, 1994. "Infinite Histories and Steady Orbits in Repeated Games," Games and Economic Behavior, Elsevier, vol. 6(3), pages 370-399, May.
    21. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.

    More about this item

    Keywords

    Repeated games; Bounded complexity; Equilibrium payoffs; Bounded recall; Finite automata; Concealed correlation;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:115:y:2019:i:c:p:131-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.