IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00487960.html
   My bibliography  Save this paper

Empirical Distributions of Beliefs Under Imperfect Observation

Author

Listed:
  • Olivier Gossner

    (PJSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique, MEDS, Northwestern University - Northwestern University [Evanston])

  • Tristan Tomala

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

Let (xn)n be a process with values in a finite set X and law P, and let yn = f(xn) be a function of the process. At stage n, the conditional distribution pn = P(xn | x1,...,xn–1), element of = (X), is the belief that a perfect observer, who observes the process online, holds on its realization at stage n. A statistician observing the signals y1,...,yn holds a belief en = P(pn | x1,...,xn) () on the possible predictions of the perfect observer. Given X and f, we characterize the set of limits of expected empirical distributions of the process (en) when P ranges over all possible laws of (xn)n.

Suggested Citation

  • Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Post-Print hal-00487960, HAL.
  • Handle: RePEc:hal:journl:hal-00487960
    DOI: 10.1287/moor.1050.0174
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Cabrales & Olivier Gossner & Roberto Serrano, 2013. "Entropy and the Value of Information for Investors," American Economic Review, American Economic Association, vol. 103(1), pages 360-377, February.
    2. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.
    3. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    4. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.
    5. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
    6. Gossner, Olivier & Hörner, Johannes, 2010. "When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 63-84, January.
    7. Andrew Caplin & Daniel J. Martin, 2020. "Framing, Information, and Welfare," NBER Working Papers 27265, National Bureau of Economic Research, Inc.
    8. Olivier Gossner & Jöhannes Horner, 2006. "When is the individually rational payoff in a repeated game equal to the minmax payoff?," Discussion Papers 1440, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Le Treust, Maël & Tomala, Tristan, 2019. "Persuasion with limited communication capacity," Journal of Economic Theory, Elsevier, vol. 184(C).
    10. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00487960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.