IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v73y2011i2p452-458.html
   My bibliography  Save this article

Generalized Raiffa solutions

Author

Listed:
  • Diskin, A.
  • Koppel, M.
  • Samet, D.

Abstract

We define a family of solutions for n-person bargaining problems which generalizes the discrete Raiffa solution and approaches the continuous Raiffa solution. Each member of this family is a stepwise solution, which is a pair of functions: a step-function that determines a new disagreement point for a given bargaining problem, and a solution function that assigns the solution to the problem. We axiomatically characterize stepwise solutions of the family of generalized Raiffa solutions, using standard axioms of bargaining theory.

Suggested Citation

  • Diskin, A. & Koppel, M. & Samet, D., 2011. "Generalized Raiffa solutions," Games and Economic Behavior, Elsevier, vol. 73(2), pages 452-458.
  • Handle: RePEc:eee:gamebe:v:73:y:2011:i:2:p:452-458
    DOI: 10.1016/j.geb.2011.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825611000704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2011.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Neill, Barry & Samet, Dov & Wiener, Zvi & Winter, Eyal, 2004. "Bargaining with an agenda," Games and Economic Behavior, Elsevier, vol. 48(1), pages 139-153, July.
    2. Salonen, Hannu, 1988. "Decomposable solutions for N -- person bargaining games," European Journal of Political Economy, Elsevier, vol. 4(3), pages 333-347.
    3. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    4. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    5. van Damme, E.E.C. & Peters, H., 1991. "Characterizing the Nash and Raiffa bargaining solutions by disagreement point axioms," Other publications TiSEM 4bd5eb9e-328a-45a0-aa0a-e, Tilburg University, School of Economics and Management.
    6. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    7. Hans Peters & Eric Van Damme, 1991. "Characterizing the Nash and Raiffa Bargaining Solutions by Disagreement Point Axioms," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 447-461, August.
    8. Trockel, Walter, 2011. "An exact non-cooperative support for the sequential Raiffa solution," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 77-83, January.
    9. Thomson, William, 1987. "Monotonicity of bargaining solutions with respect to the disagreement point," Journal of Economic Theory, Elsevier, vol. 42(1), pages 50-58, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily Tanimura & Sylvie Thoron, 2016. "How Best to Disagree in Order to Agree?," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-17, September.
    2. Hans Gersbach & Oriol Tejada, 2024. "Semi-flexible majority rules for public good provision," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(3), pages 677-715, November.
    3. M. Carmen Marco & Josep E. Peris & Begoña Subiza, 2020. "A Concessions-Based Procedure for Meta-Bargaining Problems," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 105-120, November.
    4. Philip Grech & Oriol Tejada, 2018. "Divide the dollar and conquer more: sequential bargaining and risk aversion," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1261-1286, November.
    5. Ephraim Zehavi & Amir Leshem, 2018. "On the Allocation of Multiple Divisible Assets to Players with Different Utilities," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 253-274, June.
    6. Avidit Acharya & Juan Ortner, 2017. "Policy Reform," Boston University - Department of Economics - Working Papers Series WP2017-007, Boston University - Department of Economics.
    7. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.
    8. Anbarci, Nejat & Sun, Ching-jen, 2013. "Robustness of intermediate agreements and bargaining solutions," Games and Economic Behavior, Elsevier, vol. 77(1), pages 367-376.
    9. Walter Trockel, 2015. "Axiomatization of the discrete Raiffa solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 9-17, April.
    10. Jinde Jiang & Shuhua Jiang & Guoyin Xu & Jing Li, 2024. "Research on Pricing Strategy and Profit-Distribution Mechanism of Green and Low-Carbon Agricultural Products’ Traceability Supply Chain," Sustainability, MDPI, vol. 16(5), pages 1-23, March.
    11. Shiran Rachmilevitch, 2021. "Step-by-step negotiations and utilitarianism," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 433-445, June.
    12. Chatterjee, Kalyan & Chaturvedi, Rakesh, 2024. "Integrating Raiffa and Nash approaches to bargaining using interim agreements," Games and Economic Behavior, Elsevier, vol. 146(C), pages 105-120.
    13. Bram Driesen & Peter Eccles & Nora Wegner, 2017. "A non-cooperative foundation for the continuous Raiffa solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1115-1135, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Grech & Oriol Tejada, 2018. "Divide the dollar and conquer more: sequential bargaining and risk aversion," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1261-1286, November.
    2. Walter Trockel, 2015. "Axiomatization of the discrete Raiffa solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 9-17, April.
    3. Ephraim Zehavi & Amir Leshem, 2018. "On the Allocation of Multiple Divisible Assets to Players with Different Utilities," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 253-274, June.
    4. Anbarci, Nejat & Sun, Ching-jen, 2013. "Robustness of intermediate agreements and bargaining solutions," Games and Economic Behavior, Elsevier, vol. 77(1), pages 367-376.
    5. Haruo Imai & Hannu Salonen, 2012. "A characterization of a limit solution for finite horizon bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 603-622, August.
    6. Bas Dietzenbacher & Hans Peters, 2022. "Characterizing NTU-bankruptcy rules using bargaining axioms," Annals of Operations Research, Springer, vol. 318(2), pages 871-888, November.
    7. KIbrIs, Özgür & TapkI, Ipek Gürsel, 2010. "Bargaining with nonanonymous disagreement: Monotonic rules," Games and Economic Behavior, Elsevier, vol. 68(1), pages 233-241, January.
    8. Youngsub Chun, 2021. "Axioms concerning uncertain disagreement points in 2-person bargaining problems," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 6(1), pages 37-58, December.
    9. Walter Bossert & Hans Peters, 2022. "Individual disagreement point concavity and the bargaining problem," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 6-15, March.
    10. Smorodinsky, Rann, 2005. "Nash's bargaining solution when the disagreement point is random," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 3-11, July.
    11. Dominik Karos & Nozomu Muto & Shiran Rachmilevitch, 2018. "A generalization of the Egalitarian and the Kalai–Smorodinsky bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1169-1182, November.
    12. Ismail Saglam, 2017. "Iterated Kalai–Smorodinsky–Nash compromise," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 335-349, November.
    13. Emily Tanimura & Sylvie Thoron, 2016. "How Best to Disagree in Order to Agree?," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-17, September.
    14. Shiran Rachmilevitch, 2021. "Step-by-step negotiations and utilitarianism," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 433-445, June.
    15. Xu, Yongsheng, 2012. "Symmetry-based compromise and the Nash solution to convex bargaining problems," Economics Letters, Elsevier, vol. 115(3), pages 484-486.
    16. Joan Esteban & József Sákovics, 2002. "Endogenous bargaining power," Economics Working Papers 644, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Safra, Zvi & Samet, Dov, 2004. "An ordinal solution to bargaining problems with many players," Games and Economic Behavior, Elsevier, vol. 46(1), pages 129-142, January.
    18. Geoffroy Clippel, 2007. "An axiomatization of the Nash bargaining solution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 29(2), pages 201-210, September.
    19. Kıbrıs, Özgür & Tapkı, İpek Gürsel, 2011. "Bargaining with nonanonymous disagreement: Decomposable rules," Mathematical Social Sciences, Elsevier, vol. 62(3), pages 151-161.
    20. Haruo Imai & Hannu Salonen, 2009. "Limit Solutions for Finite Horizon Bargaining Problems," Discussion Papers 51, Aboa Centre for Economics.

    More about this item

    Keywords

    Nash bargaining problem; Raiffa solution;

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:73:y:2011:i:2:p:452-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.