IDEAS home Printed from https://ideas.repec.org/p/bro/econwp/2004-17.html
   My bibliography  Save this paper

An Axiomatization of the Nash Bargaining Solution

Author

Listed:
  • Geoffroy de Clippel

Abstract

No abstract is available for this item.

Suggested Citation

  • Geoffroy de Clippel, 2004. "An Axiomatization of the Nash Bargaining Solution," Working Papers 2004-17, Brown University, Department of Economics.
  • Handle: RePEc:bro:econwp:2004-17
    as

    Download full text from publisher

    File URL: https://economics.brown.edu/sites/g/files/dprerj726/files/papers/2004-17_paper.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    2. Eyal Winter & Oscar Volij & Nir Dagan, 2002. "A characterization of the Nash bargaining solution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 811-823.
    3. Chun, Youngsub & Thomson, William, 1990. "Nash solution and uncertain disagreement points," Games and Economic Behavior, Elsevier, vol. 2(3), pages 213-223, September.
    4. van Damme, E.E.C. & Peters, H., 1991. "Characterizing the Nash and Raiffa bargaining solutions by disagreement point axioms," Other publications TiSEM 4bd5eb9e-328a-45a0-aa0a-e, Tilburg University, School of Economics and Management.
    5. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    6. Thomson, William, 1994. "Cooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 35, pages 1237-1284, Elsevier.
    7. Chun, Youngsub, 1990. "Minimal cooperation in bargaining," Economics Letters, Elsevier, vol. 34(4), pages 311-316, December.
    8. Hans Peters & Eric Van Damme, 1991. "Characterizing the Nash and Raiffa Bargaining Solutions by Disagreement Point Axioms," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 447-461, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiran Rachmilevitch, 2015. "The Nash solution is more utilitarian than egalitarian," Theory and Decision, Springer, vol. 79(3), pages 463-478, November.
    2. Shiran Rachmilevitch, 2011. "A characterization of the Kalai–Smorodinsky bargaining solution by disagreement point monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 691-696, November.
    3. Sigbjørn Birkeland & Bertil Tungodden, 2014. "Fairness motivation in bargaining: a matter of principle," Theory and Decision, Springer, vol. 77(1), pages 125-151, June.
    4. Anbarci, Nejat & Sun, Ching-jen, 2013. "Robustness of intermediate agreements and bargaining solutions," Games and Economic Behavior, Elsevier, vol. 77(1), pages 367-376.
    5. Rogna, Marco, 2021. "The central core and the mid-central core as novel set-valued and point-valued solution concepts for transferable utility coalitional games," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 1-11.
    6. Rachmilevitch, Shiran, "undated". "The Nash Bargaining Solution and Interpersonal Utility Comparisons," Working Papers WP2012/1, University of Haifa, Department of Economics.
    7. Dominik Karos & Nozomu Muto & Shiran Rachmilevitch, 2018. "A generalization of the Egalitarian and the Kalai–Smorodinsky bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1169-1182, November.
    8. L. Monroy & V. Rubiales & A. M. Mármol, 2017. "The conservative Kalai–Smorodinsky solution for multiple scenario bargaining," Annals of Operations Research, Springer, vol. 251(1), pages 285-299, April.
    9. Osamu Mori, 2018. "Two simple characterizations of the Nash bargaining solution," Theory and Decision, Springer, vol. 85(2), pages 225-232, August.
    10. Shiran Rachmilevitch, 2014. "Randomized dictatorship and the Kalai–Smorodinsky bargaining solution," Theory and Decision, Springer, vol. 76(2), pages 173-177, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiran Rachmilevitch, 2011. "Disagreement point axioms and the egalitarian bargaining solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 63-85, February.
    2. Xu, Yongsheng, 2012. "Symmetry-based compromise and the Nash solution to convex bargaining problems," Economics Letters, Elsevier, vol. 115(3), pages 484-486.
    3. Youngsub Chun, 2021. "Axioms concerning uncertain disagreement points in 2-person bargaining problems," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 6(1), pages 37-58, December.
    4. Vartiainen, Hannu, 2007. "Collective choice with endogenous reference outcome," Games and Economic Behavior, Elsevier, vol. 58(1), pages 172-180, January.
    5. Bas Dietzenbacher & Hans Peters, 2022. "Characterizing NTU-bankruptcy rules using bargaining axioms," Annals of Operations Research, Springer, vol. 318(2), pages 871-888, November.
    6. KIbrIs, Özgür & TapkI, Ipek Gürsel, 2010. "Bargaining with nonanonymous disagreement: Monotonic rules," Games and Economic Behavior, Elsevier, vol. 68(1), pages 233-241, January.
    7. Eyal Winter & Oscar Volij & Nir Dagan, 2002. "A characterization of the Nash bargaining solution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 811-823.
    8. Smorodinsky, Rann, 2005. "Nash's bargaining solution when the disagreement point is random," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 3-11, July.
    9. Dominik Karos & Nozomu Muto & Shiran Rachmilevitch, 2018. "A generalization of the Egalitarian and the Kalai–Smorodinsky bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1169-1182, November.
    10. Shiran Rachmilevitch, 2021. "Step-by-step negotiations and utilitarianism," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 433-445, June.
    11. Subrato Banerjee, 2020. "Effect of reduced opportunities on bargaining outcomes: an experiment with status asymmetries," Theory and Decision, Springer, vol. 89(3), pages 313-346, October.
    12. Kıbrıs, Özgür & Tapkı, İpek Gürsel, 2011. "Bargaining with nonanonymous disagreement: Decomposable rules," Mathematical Social Sciences, Elsevier, vol. 62(3), pages 151-161.
    13. Haruo Imai & Hannu Salonen, 2009. "Limit Solutions for Finite Horizon Bargaining Problems," Discussion Papers 51, Aboa Centre for Economics.
    14. Soismaa, Margareta, 1999. "A note on efficient solutions for the linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 112(2), pages 427-431, January.
    15. Driesen, Bram & Perea, Andrés & Peters, Hans, 2011. "The Kalai-Smorodinsky bargaining solution with loss aversion," Mathematical Social Sciences, Elsevier, vol. 61(1), pages 58-64, January.
    16. Philip Grech & Oriol Tejada, 2018. "Divide the dollar and conquer more: sequential bargaining and risk aversion," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1261-1286, November.
    17. Ephraim Zehavi & Amir Leshem, 2018. "On the Allocation of Multiple Divisible Assets to Players with Different Utilities," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 253-274, June.
    18. Anbarci, Nejat & Sun, Ching-jen, 2013. "Robustness of intermediate agreements and bargaining solutions," Games and Economic Behavior, Elsevier, vol. 77(1), pages 367-376.
    19. Diskin, A. & Koppel, M. & Samet, D., 2011. "Generalized Raiffa solutions," Games and Economic Behavior, Elsevier, vol. 73(2), pages 452-458.
    20. Walter Bossert & Hans Peters, 2022. "Individual disagreement point concavity and the bargaining problem," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 6-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2004-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brown Economics Webmaster (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.