IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v63y2008i1p166-187.html
   My bibliography  Save this article

Adaptation and complexity in repeated games

Author

Listed:
  • Maenner, Eliot

Abstract

The paper presents a learning model for two-player infinitely repeated games. In an inference step players construct minimally complex inferences of strategies based on observed play, and in an adaptation step players choose minimally complex best responses to an inference. When players randomly select an inference from a probability distribution with full support the set of steady states is a subset of the set of Nash equilibria in which only stage game Nash equilibria are played. When players make 'cautious' inferences the set of steady states is the subset of self-confirming equilibria with Nash outcome paths. When players use different inference rules, the set of steady states can lie between the previous two cases.

Suggested Citation

  • Maenner, Eliot, 2008. "Adaptation and complexity in repeated games," Games and Economic Behavior, Elsevier, vol. 63(1), pages 166-187, May.
  • Handle: RePEc:eee:gamebe:v:63:y:2008:i:1:p:166-187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(07)00146-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Jehiel, 2001. "Limited Foresight May Force Cooperation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 369-391.
    2. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    3. Banks, Jeffrey S. & Sundaram, Rangarajan K., 1990. "Repeated games, finite automata, and complexity," Games and Economic Behavior, Elsevier, vol. 2(2), pages 97-117, June.
    4. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    5. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    6. Spiegler, Ran, 2004. "Simplicity of beliefs and delay tactics in a concession game," Games and Economic Behavior, Elsevier, vol. 47(1), pages 200-220, April.
    7. Hamid Sabourian, 2000. "Bargaining and Markets: Complexity and the Walrasian Outcome," Cowles Foundation Discussion Papers 1249, Cowles Foundation for Research in Economics, Yale University.
    8. Ran Spiegler, 2002. "Equilibrium in Justifiable Strategies: A Model of Reason-based Choice in Extensive-form Games," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 691-706.
    9. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    10. Volij, Oscar, 2002. "In Defense of DEFECT," Games and Economic Behavior, Elsevier, vol. 39(2), pages 309-321, May.
    11. Eliaz, Kfir, 2003. "Nash equilibrium when players account for the complexity of their forecasts," Games and Economic Behavior, Elsevier, vol. 44(2), pages 286-310, August.
    12. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    13. Kalyan Chatterjee & Hamid Sabourian, 2000. "Multiperson Bargaining and Strategic Complexity," Econometrica, Econometric Society, vol. 68(6), pages 1491-1510, November.
    14. Jeheil Phillippe, 1995. "Limited Horizon Forecast in Repeated Alternate Games," Journal of Economic Theory, Elsevier, vol. 67(2), pages 497-519, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    2. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    3. Tsakas, Elias, 2014. "Rational belief hierarchies," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 121-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jehiel, Philippe, 2005. "Analogy-based expectation equilibrium," Journal of Economic Theory, Elsevier, vol. 123(2), pages 81-104, August.
    2. Spiegler, Ran, 2004. "Simplicity of beliefs and delay tactics in a concession game," Games and Economic Behavior, Elsevier, vol. 47(1), pages 200-220, April.
    3. Wichardt, Philipp C., 2010. "Modelling equilibrium play as governed by analogy and limited foresight," Games and Economic Behavior, Elsevier, vol. 70(2), pages 472-487, November.
    4. Christos Ioannou, 2014. "Coevolution of finite automata with errors," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 541-571, July.
    5. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," PSE Working Papers halshs-03735680, HAL.
    6. Mengel, Friederike, 2014. "Learning by (limited) forward looking players," Journal of Economic Behavior & Organization, Elsevier, vol. 108(C), pages 59-77.
    7. García, Julián & van Veelen, Matthijs, 2016. "In and out of equilibrium I: Evolution of strategies in repeated games with discounting," Journal of Economic Theory, Elsevier, vol. 161(C), pages 161-189.
    8. Zhang, Huanren, 2018. "Errors can increase cooperation in finite populations," Games and Economic Behavior, Elsevier, vol. 107(C), pages 203-219.
    9. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    10. Spiegler, Ran, 2005. "Testing threats in repeated games," Journal of Economic Theory, Elsevier, vol. 121(2), pages 214-235, April.
    11. van Veelen, Matthijs & García, Julián, 2019. "In and out of equilibrium II: Evolution in repeated games with discounting and complexity costs," Games and Economic Behavior, Elsevier, vol. 115(C), pages 113-130.
    12. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    13. Anderlini, Luca & Sabourian, Hamid, 2001. "Cooperation and computability in n-player games," Mathematical Social Sciences, Elsevier, vol. 42(2), pages 99-137, September.
    14. Jones, Matthew T., 2014. "Strategic complexity and cooperation: An experimental study," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 352-366.
    15. Philippe Jehiel & Andrew Lilico, 2010. "Smoking Today and Stopping Tomorrow: a Limited Foresight Perspective," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 141-164, June.
    16. van Damme, E.E.C., 1995. "Game theory : The next stage," Other publications TiSEM 7779b0f9-bef5-45c7-ae6b-7, Tilburg University, School of Economics and Management.
    17. Drew Fudenberg & David G. Rand & Anna Dreber, 2012. "Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World," American Economic Review, American Economic Association, vol. 102(2), pages 720-749, April.
    18. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    19. Binmore, Ken & Piccione, Michele & Samuelson, Larry, 1998. "Evolutionary Stability in Alternating-Offers Bargaining Games," Journal of Economic Theory, Elsevier, vol. 80(2), pages 257-291, June.
    20. Pedro Dal Bo & Guillaume R. Frochette, 2011. "The Evolution of Cooperation in Infinitely Repeated Games: Experimental Evidence," American Economic Review, American Economic Association, vol. 101(1), pages 411-429, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:63:y:2008:i:1:p:166-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.