IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v156y2023ics1389934123001636.html
   My bibliography  Save this article

Effect of climate change on the land rent of radiata pine plantations in Chile: Site productivity and forest fires

Author

Listed:
  • Labbé, Rodrigo
  • Niklitschek, Mario
  • Contreras, Marco

Abstract

Climate change can severely affect forest plantation productivity and fire regimes in temperate regions. The economic evaluation of these impacts is challenging because of the spatially differentiated effects expected to occur across planted areas. We calculated the combined effect of projected climate change on the stochastic land expectation value (SLEV) for a random sample of stands covering the Pinus radiata plantations in central-southern Chile. To simplify the stochastic evaluation problem with changing productivity and fire frequencies over time, we divided rotations into stages, before and after commercial thinning, and assumed that reforestation is at the end of each stage. The SLEV was calculated through Monte Carlo simulations using the coefficients from previously estimated productivity and fire risk statistical models. The predicted combined effect on the SLEV is negative in most regions except those in the southern limit of the specie distribution. In the economically crucial coastal area of the central regions, the negative effect of more frequent fires outweighs faster growth. In the northern drier areas, the SLEV becomes negative due to a large drop in site productivity. Anticipatory reassignments of management regimes have a large adaptation value in these low-productivity sites. Our optimization-simulation results suggest that relative to prescribed management regimes, the optimal rotation age in most low-productivity sites is longer and in most high-productivity sites shorter. Shortening the rotation age by one to two years has an important adaptation value in highly productive coastal sites.

Suggested Citation

  • Labbé, Rodrigo & Niklitschek, Mario & Contreras, Marco, 2023. "Effect of climate change on the land rent of radiata pine plantations in Chile: Site productivity and forest fires," Forest Policy and Economics, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:forpol:v:156:y:2023:i:c:s1389934123001636
    DOI: 10.1016/j.forpol.2023.103068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934123001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2023.103068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susaeta, Andres & Carter, Douglas R. & Chang, Sun Joseph & Adams, Damian C., 2016. "A generalized Reed model with application to wildfire risk in even-aged Southern United States pine plantations," Forest Policy and Economics, Elsevier, vol. 67(C), pages 60-69.
    2. L. Hannah & C. Costello & C. Guo & L. Ries & C. Kolstad & D. Panitz & N. Snider, 2011. "The impact of climate change on California timberlands," Climatic Change, Springer, vol. 109(1), pages 429-443, December.
    3. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    4. Bin Mei & David N. Wear & Jesse D. Henderson, 2019. "Timberland Investment under Both Financial and Biophysical Risk," Land Economics, University of Wisconsin Press, vol. 95(2), pages 279-291.
    5. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    6. Adam J. Daigneault & Mario J. Miranda & Brent Sohngen, 2010. "Optimal Forest Management with Carbon Sequestration Credits and Endogenous Fire Risk," Land Economics, University of Wisconsin Press, vol. 86(1), pages 155-172.
    7. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    8. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    9. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    10. Patto, João V. & Rosa, Renato, 2022. "Adapting to frequent fires: Optimal forest management revisited," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    11. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    2. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    3. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    4. Al Abri, Ibtisam H. & Grogan, Kelly A. & Daigneault, Adam, 2017. "Optimal Forest Fire Management with Applications to Florida," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258568, Agricultural and Applied Economics Association.
    5. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    6. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    7. Susaeta, Andres, 2018. "On Pressler’s indicator rate formula under the generalized Reed model," Journal of Forest Economics, Elsevier, vol. 30(C), pages 32-37.
    8. Tommi Ekholm, 2019. "Optimal forest rotation under carbon pricing and forest damage risk," Papers 1912.00269, arXiv.org.
    9. Patto, João V. & Rosa, Renato, 2022. "Adapting to frequent fires: Optimal forest management revisited," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    10. Rossi, David & Kuusela, Olli-Pekka, 2023. "Carbon and Timber Management in Western Oregon under Tax-Financed Investments in Wildfire Risk Mitigation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    11. Luis Diaz-Balteiro & David Martell & Carlos Romero & Andrés Weintraub, 2014. "The optimal rotation of a flammable forest stand when both carbon sequestration and timber are valued: a multi-criteria approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 375-387, June.
    12. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    13. Lauer, Christopher J. & Montgomery, Claire A. & Dietterich, Thomas G., 2017. "Spatial interactions and optimal forest management on a fire-threatened landscape," Forest Policy and Economics, Elsevier, vol. 83(C), pages 107-120.
    14. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    15. Charles Sims & David Aadland & David Finnoff & James Powell, 2013. "How Ecosystem Service Provision Can Increase Forest Mortality from Insect Outbreaks," Land Economics, University of Wisconsin Press, vol. 89(1), pages 154-176.
    16. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    17. Brunette, Marielle & Couture, Stéphane & Langlais, Eric, 2007. "Hedging Strategies in Forest Management," MPRA Paper 5228, University Library of Munich, Germany.
    18. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    19. Susaeta, Andres & Carney, Tyler, 2023. "Optimal regimes of prescribed burning in forest plantations in the presence of risk of wildfires in the southeastern United States," Forest Policy and Economics, Elsevier, vol. 151(C).
    20. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:156:y:2023:i:c:s1389934123001636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.