IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v83y2017icp107-120.html
   My bibliography  Save this article

Spatial interactions and optimal forest management on a fire-threatened landscape

Author

Listed:
  • Lauer, Christopher J.
  • Montgomery, Claire A.
  • Dietterich, Thomas G.

Abstract

Forest management in the face of fire risk is a challenging problem because fire spreads across a landscape and because its occurrence is unpredictable. Accounting for the existence of stochastic events that generate spatial interactions in the context of a dynamic decision process is crucial for determining optimal management. This paper demonstrates a method for incorporating spatial information and interactions into management decisions made over time. A machine learning technique called approximate dynamic programming is applied to determine the optimal timing and location of fuel treatments and timber harvests for a fire-threatened landscape. Larger net present values can be achieved using policies that explicitly consider evolving spatial interactions created by fire spread, compared to policies that ignore the spatial dimension of the inter-temporal optimization problem.

Suggested Citation

  • Lauer, Christopher J. & Montgomery, Claire A. & Dietterich, Thomas G., 2017. "Spatial interactions and optimal forest management on a fire-threatened landscape," Forest Policy and Economics, Elsevier, vol. 83(C), pages 107-120.
  • Handle: RePEc:eee:forpol:v:83:y:2017:i:c:p:107-120
    DOI: 10.1016/j.forpol.2017.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934116304749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2017.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    2. J. Garcia-Gonzalo & T. Pukkala & J. Borges, 2014. "Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 379-395, August.
    3. Warren B. Powell, 2009. "What you should know about approximate dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 239-249, April.
    4. Masashi Konoshima & Claire A. Montgomery & Heidi J. Albers & Jeffrey L. Arthur, 2008. "Spatial-Endogenous Fire Risk and Efficient Fuel Management and Timber Harvest," Land Economics, University of Wisconsin Press, vol. 84(3), pages 449-468.
    5. Adam J. Daigneault & Mario J. Miranda & Brent Sohngen, 2010. "Optimal Forest Management with Carbon Sequestration Credits and Endogenous Fire Risk," Land Economics, University of Wisconsin Press, vol. 86(1), pages 155-172.
    6. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    7. Reed, William J., 1993. "The decision to conserve or harvest old-growth forest," Ecological Economics, Elsevier, vol. 8(1), pages 45-69, August.
    8. Samuelson, Paul A, 1976. "Economics of Forestry in an Evolving Society," Economic Inquiry, Western Economic Association International, vol. 14(4), pages 466-492, December.
    9. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanieski da Silva, Bruno & Tanger, Shaun & Marufuzzaman, Mohammad & Cubbage, Frederick, 2022. "Perfect assumptions in an imperfect world: Managing timberland in an oligopoly market," Forest Policy and Economics, Elsevier, vol. 137(C).
    2. Massimiliano Agovino & Massimiliano Cerciello & Aniello Ferraro & Antonio Garofalo, 2021. "Spatial analysis of wildfire incidence in the USA: the role of climatic spillovers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6084-6105, April.
    3. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, David & Kuusela, Olli-Pekka, 2023. "Carbon and Timber Management in Western Oregon under Tax-Financed Investments in Wildfire Risk Mitigation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    2. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    3. Patto, João V. & Rosa, Renato, 2022. "Adapting to frequent fires: Optimal forest management revisited," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    4. Charles Sims & David Aadland & David Finnoff & James Powell, 2013. "How Ecosystem Service Provision Can Increase Forest Mortality from Insect Outbreaks," Land Economics, University of Wisconsin Press, vol. 89(1), pages 154-176.
    5. Al Abri, Ibtisam H. & Grogan, Kelly A. & Daigneault, Adam, 2017. "Optimal Forest Fire Management with Applications to Florida," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258568, Agricultural and Applied Economics Association.
    6. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    7. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    8. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    9. Tommi Ekholm, 2019. "Optimal forest rotation under carbon pricing and forest damage risk," Papers 1912.00269, arXiv.org.
    10. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    11. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    12. J. Garcia-Gonzalo & T. Pukkala & J. Borges, 2014. "Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 379-395, August.
    13. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    14. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    15. Luis Diaz-Balteiro & David Martell & Carlos Romero & Andrés Weintraub, 2014. "The optimal rotation of a flammable forest stand when both carbon sequestration and timber are valued: a multi-criteria approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 375-387, June.
    16. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    17. Alvarez, Luis H. R. & Koskela, Erkki, 2005. "Wicksellian theory of forest rotation under interest rate variability," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 529-545, March.
    18. Labbé, Rodrigo & Niklitschek, Mario & Contreras, Marco, 2023. "Effect of climate change on the land rent of radiata pine plantations in Chile: Site productivity and forest fires," Forest Policy and Economics, Elsevier, vol. 156(C).
    19. Barreal, Jesús & Loureiro, Maria L. & Picos, Juan, 2014. "On insurance as a tool for securing forest restoration after wildfires," Forest Policy and Economics, Elsevier, vol. 42(C), pages 15-23.
    20. Insley, Margaret & Lei, Manle, 2007. "Hedges and Trees: Incorporating Fire Risk into Optimal Decisions in Forestry Using a No-Arbitrage Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(3), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:83:y:2017:i:c:p:107-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.