IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipcs1544612323009224.html
   My bibliography  Save this article

Regression, multicollinearity and Markowitz

Author

Listed:
  • Ortiz, Roberto
  • Contreras, Mauricio
  • Mellado, Cristhian

Abstract

This paper shows that the usual drawbacks of the Markowitz model (high optimal weights, high volatility and low out-of-sample performance) can be overcome by correcting for the multicollinearity of individual assets that directly affect the estimation of portfolio weights. That improves the stability, predictability and out-of-sample performance of the Markowitz model, allowing it to provide better results than the 1/n rule.

Suggested Citation

  • Ortiz, Roberto & Contreras, Mauricio & Mellado, Cristhian, 2023. "Regression, multicollinearity and Markowitz," Finance Research Letters, Elsevier, vol. 58(PC).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323009224
    DOI: 10.1016/j.frl.2023.104550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323009224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    3. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    4. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    7. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    8. Shapour Mohammadi, 2022. "A test of harmful multicollinearity: A generalized ridge regression approach," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(3), pages 724-743, February.
    9. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    10. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    11. Klein, Roger W. & Bawa, Vijay S., 1976. "The effect of estimation risk on optimal portfolio choice," Journal of Financial Economics, Elsevier, vol. 3(3), pages 215-231, June.
    12. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    13. Barry, Christopher B, 1974. "Portfolio Analysis under Uncertain Means, Variances, and Covariances," Journal of Finance, American Finance Association, vol. 29(2), pages 515-522, May.
    14. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    15. Gabor Papp & Szilard Pafka & Maciej A. Nowak & Imre Kondor, 2005. "Random Matrix Filtering in Portfolio Optimization," Papers physics/0509235, arXiv.org.
    16. Brown, S., 1979. "The Effect of Estimation Risk on Capital Market Equilibrium," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 14(2), pages 215-220, June.
    17. Goto, Shingo & Xu, Yan, 2015. "Improving Mean Variance Optimization through Sparse Hedging Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1415-1441, December.
    18. Roberto Ortiz & Mauricio Contreras & Cristhian Mellado, 2022. "Improving the volatility of the optimal weights of the Markowitz model," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 2836-2858, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    3. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    4. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    5. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    6. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    7. Lim Hao Shen Keith, 2024. "Covariance Matrix Analysis for Optimal Portfolio Selection," Papers 2407.08748, arXiv.org.
    8. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    9. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    10. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    11. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    12. Irina Murtazashvili & Nadia Vozlyublennaia, 2013. "Diversification Strategies: Do Limited Data Constrain Investors?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 36(2), pages 215-232, June.
    13. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2020. "Company classification using machine learning," Papers 2004.01496, arXiv.org, revised May 2020.
    14. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    15. Khashanah, Khaldoun & Simaan, Majeed & Simaan, Yusif, 2022. "Do we need higher-order comoments to enhance mean-variance portfolios? Evidence from a simplified jump process," International Review of Financial Analysis, Elsevier, vol. 81(C).
    16. Matthias M. M. Buehlmaier & Kit Pong Wong, 2020. "Should investors join the index revolution? Evidence from around the world," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 192-218, May.
    17. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    18. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    19. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    20. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.

    More about this item

    Keywords

    Markowitz mean–variance optimization G11; Estimation of optimal portfolio weights G11; Financial econometrics C58; Multicollinearity C58;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323009224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.