IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipbs1544612323008176.html
   My bibliography  Save this article

Decentralized Autonomous Organizations (DAOs): Catalysts for enhanced market efficiency

Author

Listed:
  • Perez Riaza, Baptiste
  • Gnabo, Jean-Yves

Abstract

The crypto-asset market has shown variations in efficiency across assets and time, but limited research has explored the driving factors beyond liquidity. Exploiting a dataset of 122 crypto-assets, with imbalanced data, this study investigates the impact of market conditions and inherent asset characteristics on return predictability. Our findings reveal that both factors significantly influence the efficiency of crypto-assets. Notably, Decentralized Autonomous Organizations (DAOs) exhibit higher efficiency compared to non-DAO projects. This suggests that transparent decentralized decision-making models can reduce information asymmetry, leading to a more efficient market pricing. Furthermore, we show a positive relationship between market efficiency and increased liquidity and age. These insights shed light on the role of DAOs as catalysts for enhancing market efficiency and have important implications for investors and market participants in the crypto-asset market.

Suggested Citation

  • Perez Riaza, Baptiste & Gnabo, Jean-Yves, 2023. "Decentralized Autonomous Organizations (DAOs): Catalysts for enhanced market efficiency," Finance Research Letters, Elsevier, vol. 58(PB).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pb:s1544612323008176
    DOI: 10.1016/j.frl.2023.104445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323008176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vidal-Tomás, David, 2022. "Which cryptocurrency data sources should scholars use?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    2. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    3. Adam S. Hayes, 2019. "Bitcoin price and its marginal cost of production: support for a fundamental value," Applied Economics Letters, Taylor & Francis Journals, vol. 26(7), pages 554-560, April.
    4. Akihiko Noda, 2021. "On the evolution of cryptocurrency market efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 433-439, March.
    5. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    6. Corbet, Shaen & Larkin, Charles & Lucey, Brian & Meegan, Andrew & Yarovaya, Larisa, 2020. "Cryptocurrency reaction to FOMC Announcements: Evidence of heterogeneity based on blockchain stack position," Journal of Financial Stability, Elsevier, vol. 46(C).
    7. Ambreen Khursheed & Muhammad Naeem & Sheraz Ahmed & Faisal Mustafa & David McMillan, 2020. "Adaptive market hypothesis: An empirical analysis of time –varying market efficiency of cryptocurrencies," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1719574-171, January.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    10. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    11. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    12. Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
    13. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    14. Michel Rauchs & Apolline Blandin & Kristina Klein & Gina Pieters & Martino Recanatini & Bryan Zhang, 2018. "2nd Global Cryptoasset Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201812-sgcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    15. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    16. John P. Conley, 2017. "Blockchain and the Economics of Crypto-tokens and Initial Coin Offerings," Vanderbilt University Department of Economics Working Papers 17-00008, Vanderbilt University Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    2. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    5. Ante, Lennart, 2023. "How Elon Musk's Twitter activity moves cryptocurrency markets," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    6. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    7. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    8. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    9. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    10. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    11. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Price delay and market frictions in cryptocurrency markets," Economics Letters, Elsevier, vol. 174(C), pages 39-41.
    12. Andrew Phiri, 2022. "Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin?," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 373-386, September.
    13. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    14. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    15. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    16. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    17. Coskun, Esra Alp & Lau, Chi Keung Marco & Kahyaoglu, Hakan, 2020. "Uncertainty and herding behavior: evidence from cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 54(C).
    18. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    19. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    20. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pb:s1544612323008176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.