IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v49y2022ics1544612322003221.html
   My bibliography  Save this article

Reconstructing a complex financial network using compressed sensing based on low-frequency time series data

Author

Listed:
  • Si, Jingjian
  • Zhou, Jinsheng
  • Gao, Xiangyun
  • Ze, Wang
  • Tao, Wu
  • Zhao, Yiran

Abstract

Financial time series data are often used to construct financial complex networks for studying price volatility transmission, risk diffusion and asset portfolio and so on. High frequency Network can provide more effective information for exploring network structure and more accurate research on network evolution rules. The motivation of this paper is to construct high frequency networks using low frequency data when high frequency data is unavailable, with improvement of compressed sensing method. Results show that the network reconstructed by compressed sensing is closer to the high frequency network. In conclusion, compressed sensing can be applied to solve financial practice problem.

Suggested Citation

  • Si, Jingjian & Zhou, Jinsheng & Gao, Xiangyun & Ze, Wang & Tao, Wu & Zhao, Yiran, 2022. "Reconstructing a complex financial network using compressed sensing based on low-frequency time series data," Finance Research Letters, Elsevier, vol. 49(C).
  • Handle: RePEc:eee:finlet:v:49:y:2022:i:c:s1544612322003221
    DOI: 10.1016/j.frl.2022.103097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322003221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    2. Zebin Zhao & Dongling Chen & Luqi Wang & Chuqiao Han, 2018. "Credit Risk Diffusion in Supply Chain Finance: A Complex Networks Perspective," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    3. Feng, Lianyue & Xu, Helian & Wu, Gang & Zhao, Yuan & Xu, Jialin, 2020. "Exploring the structure and influence factors of trade competitive advantage network along the Belt and Road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    5. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    6. Xu, Runjie & Mi, Chuanmin & Mierzwiak, Rafał & Meng, Runyu, 2020. "Complex network construction of Internet finance risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Wang, Minggang & Tian, Lixin & Xu, Hua & Li, Weiyu & Du, Ruijin & Dong, Gaogao & Wang, Jie & Gu, Jiani, 2017. "Systemic risk and spatiotemporal dynamics of the consumer market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 188-204.
    8. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    9. Sun, Bowen & Li, Huajiao & An, Pengli & Wang, Ze, 2020. "Dynamic energy stock selection based on shareholders’ coholding network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    2. Zhu, Nina & Wang, Yuqing & Yang, Shuwen & Lyu, Lixing & Gong, Kunyao & Huang, Xinyue & Huang, Siyi, 2024. "Structure characteristics and formation mechanism of the RCEP manufacturing trade network: An ERGM analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    4. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    5. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    6. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    8. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    9. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    10. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Benjamin Kofi Tawiah Edjah & Jianping Wu & Jinjin Tian, 2022. "Research on the Comparative Advantage and Complementarity of China–Ghana Agricultural Product Trade," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    12. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    13. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    14. Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
    15. Lim, Kyuseong & Kim, Sehyun & Kim, Soo Yong, 2017. "Information transfer across intra/inter-structure of CDS and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 118-126.
    16. Wang, Xiaoxuan & Gao, Xiangyun & Wu, Tao & Sun, Xiaotian, 2022. "Dynamic multiscale analysis of causality among mining stock prices," Resources Policy, Elsevier, vol. 77(C).
    17. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    18. Guo, Yaoqi & Zhao, Boya & Zhang, Hongwei, 2023. "The impact of the Belt and Road Initiative on the natural gas trade: A network structure dependence perspective," Energy, Elsevier, vol. 263(PD).
    19. Heiberger, Raphael H., 2014. "Stock network stability in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 376-381.
    20. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:49:y:2022:i:c:s1544612322003221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.