Country effects in CEE3 stock market networks: a preliminary study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- G. Bonanno & F. Lillo & R. N. Mantegna, 2001.
"High-frequency cross-correlation in a set of stocks,"
Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
- Giovanni Bonanno & Fabrizio Lillo & Rosario N. Mantegna, 2000. "High-frequency Cross-correlation in a Set of Stocks," Papers cond-mat/0009350, arXiv.org, revised Nov 2000.
- Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2012. "Stock market networks: The dynamic conditional correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4147-4158.
- R. Mantegna, 1999.
"Hierarchical structure in financial markets,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- Rosario N. Mantegna, 1998. "Hierarchical Structure in Financial Markets," Papers cond-mat/9802256, arXiv.org.
- Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
- Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
- J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
- Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
- N. Vandewalle & F. Brisbois & X. Tordoir, 2001. "Non-random topology of stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 372-374, March.
- Baumöhl, Eduard & Lyócsa, Štefan, 2012. "Constructing weekly returns based on daily stock market data: A puzzle for empirical research?," MPRA Paper 43431, University Library of Munich, Germany.
- Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
- Lyócsa, Štefan & Baumöhl, Eduard, 2012. "Testing the covariance stationarity of CEE stocks," MPRA Paper 43432, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2012. "Stock market networks: The dynamic conditional correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4147-4158.
- Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
- Sensoy, Ahmet & Tabak, Benjamin M., 2014.
"Dynamic spanning trees in stock market networks: The case of Asia-Pacific,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
- Ahmet Sensoy & Benjamin M. Tabak, 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Working Papers Series 351, Central Bank of Brazil, Research Department.
- Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015.
"Granger causality stock market networks: Temporal proximity and preferential attachment,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
- Tom'av{s} V'yrost & v{S}tefan Ly'ocsa & Eduard Baumohl, 2014. "Granger Causality Stock Market Networks: Temporal Proximity and Preferential Attachment," Papers 1408.2985, arXiv.org.
- Gogas, Periklis & Papadimitriou, Theophilos & Matthaiou, Maria-Artemis, 2016. "Bank supervision using the Threshold-Minimum Dominating Set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 23-35.
- Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
- Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
- Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
- Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
- Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
- Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
- Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
- de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
- Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
- Vyrost, Tomas, 2015. "Country and industry effects in CEE stock market networks: Preliminary results," MPRA Paper 65775, University Library of Munich, Germany.
- Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
- Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019.
"Return spillovers around the globe: A network approach,"
Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
- Stefan Lyocsa & Tomas Vyrost & Eduard Baumohl, 2015. "Return spillovers around the globe: A network approach," Papers 1507.06242, arXiv.org, revised Nov 2015.
- Tu, Chengyi, 2014. "Cointegration-based financial networks study in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 245-254.
- Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
- Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
More about this item
Keywords
stock market networks; minimum spanning trees; stock market integration;All these keywords.
JEL classification:
- L14 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Transactional Relationships; Contracts and Reputation
- G1 - Financial Economics - - General Financial Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-NET-2013-01-12 (Network Economics)
- NEP-TRA-2013-01-12 (Transition Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.