IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v44y2022ics1544612321001513.html
   My bibliography  Save this article

COVID-19 and Tail-event Driven Network Risk in the Eurozone

Author

Listed:
  • Huynh, Toan Luu Duc
  • Foglia, Matteo
  • Doukas, John A.

Abstract

This paper analyses tail risk spillover, considering interaction of the 46 largest capitalization firms in the Eurozone over the period 9 January 2006 to 28 December 2020 (including part of the COVID-19 era). Employing the Tail-Event driven NETwork (TENET) model, our findings identify insights about the risk sender and receiver in interrelationships of systemic risk beyond contemporaneous total spillover effects. First, total connectedness surged and peaked in the early months of 2020, relative to previous crises. Second, industrial manufacturing and consumer products have a high degree of risk transmission. Third, we determine the predictive indicators of spillover risk. Finally, our results hold several policy implications.

Suggested Citation

  • Huynh, Toan Luu Duc & Foglia, Matteo & Doukas, John A., 2022. "COVID-19 and Tail-event Driven Network Risk in the Eurozone," Finance Research Letters, Elsevier, vol. 44(C).
  • Handle: RePEc:eee:finlet:v:44:y:2022:i:c:s1544612321001513
    DOI: 10.1016/j.frl.2021.102070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321001513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.102070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahzad, Syed Jawad Hussain & Hoang, Thi Hong Van & Arreola-Hernandez, Jose, 2019. "Risk spillovers between large banks and the financial sector: Asymmetric evidence from Europe," Finance Research Letters, Elsevier, vol. 28(C), pages 153-159.
    2. Bruno C. Giovannetti, 2013. "Asset pricing under quantile utility maximization," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 169-179, November.
    3. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    6. Foglia, Matteo & Angelini, Eliana, 2020. "From me to you: Measuring connectedness between Eurozone financial institutions," Research in International Business and Finance, Elsevier, vol. 54(C).
    7. Seven, Ünal & Yılmaz, Fatih, 2021. "World equity markets and COVID-19: Immediate response and recovery prospects," Research in International Business and Finance, Elsevier, vol. 56(C).
    8. Ortmann, Regina & Pelster, Matthias & Wengerek, Sascha Tobias, 2020. "COVID-19 and investor behavior," Finance Research Letters, Elsevier, vol. 37(C).
    9. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    10. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    11. Chunxia, Yang & Xueshuai, Zhu & Luoluo, Jiang & Sen, Hu & He, Li, 2016. "Study on the contagion among American industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 601-612.
    12. Ya Qian & Wolfgang Härdle & Cathy Yi-Hsuan Chen, 2019. "Modelling industry interdependency dynamics in a network context," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 37(1), pages 50-70, December.
    13. Wu, Fei & Zhang, Dayong & Zhang, Zhiwei, 2019. "Connectedness and risk spillovers in China’s stock market: A sectoral analysis," Economic Systems, Elsevier, vol. 43(3).
    14. Scott R Baker & Nicholas Bloom & Steven J Davis & Kyle Kost & Marco Sammon & Tasaneeya Viratyosin & Jeffrey Pontiff, 0. "The Unprecedented Stock Market Reaction to COVID-19," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(4), pages 742-758.
    15. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    16. Christian Brownlees & Robert F. Engle, 2017. "SRISK: A Conditional Capital Shortfall Measure of Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 48-79.
    17. Syed Jawad Hussain Shahzad & Elie Bouri & Jose Arreola-Hernandez & David Roubaud & Stelios Bekiros, 2019. "Spillover across Eurozone credit market sectors and determinants," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6333-6349, December.
    18. Lyócsa, Štefan & Molnár, Peter, 2020. "Stock market oscillations during the corona crash: The role of fear and uncertainty," Finance Research Letters, Elsevier, vol. 36(C).
    19. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    20. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    21. Stefano Ramelli & Alexander F Wagner, 0. "Feverish Stock Price Reactions to COVID-19," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 622-655.
    22. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    23. Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
    24. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    25. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    26. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    27. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    28. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Eugene Stanley, H., 2016. "Who are the net senders and recipients of volatility spillovers in China’s financial markets?," Finance Research Letters, Elsevier, vol. 18(C), pages 255-262.
    29. Ashraf, Badar Nadeem, 2020. "Stock markets’ reaction to COVID-19: Cases or fatalities?," Research in International Business and Finance, Elsevier, vol. 54(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariana Paola Cortés Ángel & Mustafa Hakan Eratalay, 2022. "Deep diving into the S&P Europe 350 index network and its reaction to COVID-19," Journal of Computational Social Science, Springer, vol. 5(2), pages 1343-1408, November.
    2. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    4. Sánchez García, Javier & Cruz Rambaud, Salvador, 2023. "Inflation and systemic risk: A network econometric model," Finance Research Letters, Elsevier, vol. 56(C).
    5. Serrano, Pedro & Vaello-Sebastià, Antoni & Vich-Llompart, M. Magdalena, 2024. "The international linkages of market risk perception," Journal of Multinational Financial Management, Elsevier, vol. 72(C).
    6. Iyer, Subramanian Rama & Simkins, Betty J., 2022. "COVID-19 and the Economy: Summary of research and future directions," Finance Research Letters, Elsevier, vol. 47(PB).
    7. Kakran, Shubham & Kumari, Vineeta & Bajaj, Parminder Kaur & Sidhu, Arpit, 2024. "Exploring crisis-driven return spillovers in APEC stock markets: A frequency dynamics analysis," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    8. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    9. Nekhili, Ramzi & Foglia, Matteo & Bouri, Elie, 2023. "European bank credit risk transmission during the credit Suisse collapse," Finance Research Letters, Elsevier, vol. 58(PB).
    10. Asil Azimli, 2022. "Policy uncertainty sensitivity, COVID-19 and industry returns in the United States," Economics and Business Letters, Oviedo University Press, vol. 11(3), pages 107-117.
    11. Irwansyah & Muhammad Rinaldi & Abdurrahman Maulana Yusuf & Muhammad Harits Zidni Khatib Ramadhani & Sitti Rahma Sudirman & Rizky Yudaruddin, 2023. "The Effect of COVID-19 on Consumer Goods Sector Performance: The Role of Firm Characteristics," JRFM, MDPI, vol. 16(11), pages 1-18, November.
    12. Sakawa, Hideaki & Watanabel, Naoki, 2023. "The impact of the COVID-19 outbreak on Japanese shipping industry: An event study approach," Transport Policy, Elsevier, vol. 130(C), pages 130-140.
    13. Chortane, Sana Gaied & Pandey, Dharen Kumar, 2022. "Does the Russia-Ukraine war lead to currency asymmetries? A US dollar tale," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    14. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    2. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    3. Lang, Chunlin & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg), 2024. "Tail risk connectedness in G7 stock markets: Understanding the impact of COVID-19 and related variants," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    4. Foglia, Matteo & Addi, Abdelhamid & Wang, Gang-Jin & Angelini, Eliana, 2022. "Bearish Vs Bullish risk network: A Eurozone financial system analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    5. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost, Tomáš, 2020. "Increasing systemic risk during the Covid-19 pandemic: A cross-quantilogram analysis of the banking sector," EconStor Preprints 222580, ZBW - Leibniz Information Centre for Economics.
    6. Hanif, Waqas & Mensi, Walid & Vo, Xuan Vinh, 2021. "Impacts of COVID-19 outbreak on the spillovers between US and Chinese stock sectors," Finance Research Letters, Elsevier, vol. 40(C).
    7. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    8. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    9. Li, Yanshuang & Zhuang, Xintian & Wang, Jian & Dong, Zibing, 2021. "Analysis of the impact of COVID-19 pandemic on G20 stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    10. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    11. Zhang, Weiping & Zhuang, Xintian & Lu, Yang, 2020. "Spatial spillover effects and risk contagion around G20 stock markets based on volatility network," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    12. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    13. Demir, Ender & Danisman, Gamze Ozturk, 2021. "Banking sector reactions to COVID-19: The role of bank-specific factors and government policy responses," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Wang, Gang-Jin & Chen, Yan & Zhu, You & Xie, Chi, 2024. "Systemic risk prediction using machine learning: Does network connectedness help prediction?," International Review of Financial Analysis, Elsevier, vol. 93(C).
    15. Huynh, Toan Luu Duc & Foglia, Matteo & Nasir, Muhammad Ali & Angelini, Eliana, 2021. "Feverish sentiment and global equity markets during the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1088-1108.
    16. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    17. Aharon, David Y. & Siev, Smadar, 2021. "COVID-19, government interventions and emerging capital markets performance," Research in International Business and Finance, Elsevier, vol. 58(C).
    18. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    19. Díaz, Fernando & Henríquez, Pablo A. & Winkelried, Diego, 2022. "Stock market volatility and the COVID-19 reproductive number," Research in International Business and Finance, Elsevier, vol. 59(C).
    20. Duan, Yuejiao & El Ghoul, Sadok & Guedhami, Omrane & Li, Haoran & Li, Xinming, 2021. "Bank systemic risk around COVID-19: A cross-country analysis," Journal of Banking & Finance, Elsevier, vol. 133(C).

    More about this item

    Keywords

    Connectedness; COVID-19; Eurozone firms; Spillover risk; Systemic Risk; TENET;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • G00 - Financial Economics - - General - - - General
    • G01 - Financial Economics - - General - - - Financial Crises
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:44:y:2022:i:c:s1544612321001513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.