IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v51y2020ics1062940819302815.html
   My bibliography  Save this article

Spatial spillover effects and risk contagion around G20 stock markets based on volatility network

Author

Listed:
  • Zhang, Weiping
  • Zhuang, Xintian
  • Lu, Yang

Abstract

Employing the spatial econometric model as well as the complex network theory, this study investigates the spatial spillovers of volatility among G20 stock markets and explores the influential factors of financial risk. To achieve this objective, we use GARCH-BEKK model to construct the volatility network of G20 stock markets, and calculate the Bonacich centrality to capture the most active and influential nodes. Finally, we innovatively use the volatility network matrix as spatial weight matrix and establish spatial Durbin model to measure the direct and spatial spillover effects. We highlight several key observations: there are significant spatial spillover effects in global stock markets; volatility spillover network exists aggregation effects, hierarchical structure and dynamic evolution features; the risk contagion capability of traditional financial power countries falls, while that of “financial small countries” rises; stock market volatility, government debt and inflation are positively correlated with systemic risk, while current account and macroeconomic performance are negatively correlated; the indirect spillover effects of all explanatory variables on systemic risk are greater than the direct spillover effects.

Suggested Citation

  • Zhang, Weiping & Zhuang, Xintian & Lu, Yang, 2020. "Spatial spillover effects and risk contagion around G20 stock markets based on volatility network," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940819302815
    DOI: 10.1016/j.najef.2019.101064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940819302815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2019.101064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Todd E. Clark & Stephen J. Terry, 2010. "Time Variation in the Inflation Passthrough of Energy Prices," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(7), pages 1419-1433, October.
    3. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    4. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    5. Alexei Kireyev & Andrei Leonidov, 2018. "Network Effects of International Shocks and Spillovers," Networks and Spatial Economics, Springer, vol. 18(4), pages 805-836, December.
    6. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    7. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    8. Keating, John W. & Valcarcel, Victor J., 2015. "The Time-Varying Effects Of Permanent And Transitory Shocks To Real Output," Macroeconomic Dynamics, Cambridge University Press, vol. 19(3), pages 477-507, April.
    9. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    10. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    11. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    12. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    13. Allen, Franklin & Babus, Ana & Carletti, Elena, 2012. "Asset commonality, debt maturity and systemic risk," Journal of Financial Economics, Elsevier, vol. 104(3), pages 519-534.
    14. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    15. Boldanov, Rustam & Degiannakis, Stavros & Filis, George, 2016. "Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 209-220.
    16. F.R. Liedorp & L. Medema & M. Koetter & R.H. Koning & I. van Lelyveld, 2010. "Peer monitoring or contagion? Interbank market exposure and bank risk," DNB Working Papers 248, Netherlands Central Bank, Research Department.
    17. Tonzer, Lena, 2015. "Cross-border interbank networks, banking risk and contagion," Journal of Financial Stability, Elsevier, vol. 18(C), pages 19-32.
    18. Wang, Gang-Jin & Jiang, Zhi-Qiang & Lin, Min & Xie, Chi & Stanley, H. Eugene, 2018. "Interconnectedness and systemic risk of China's financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 1-18.
    19. Ahmad, Wasim & Mishra, Anil V. & Daly, Kevin J., 2018. "Financial connectedness of BRICS and global sovereign bond markets," Emerging Markets Review, Elsevier, vol. 37(C), pages 1-16.
    20. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    21. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    22. Francis X. Diebold & Kamil Yilmaz, 2011. "Equity Market Spillovers in the Americas," Central Banking, Analysis, and Economic Policies Book Series, in: Rodrigo Alfaro (ed.),Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 7, pages 199-214, Central Bank of Chile.
    23. Baldi, Lucia & Peri, Massimo & Vandone, Daniela, 2016. "Stock markets’ bubbles burst and volatility spillovers in agricultural commodity markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 277-285.
    24. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Eugene Stanley, H., 2016. "Who are the net senders and recipients of volatility spillovers in China’s financial markets?," Finance Research Letters, Elsevier, vol. 18(C), pages 255-262.
    25. Fernández-Rodríguez, Fernando & Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2015. "Volatility spillovers in EMU sovereign bond markets," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 337-352.
    26. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    27. Yilmaz, Kamil, 2010. "Return and volatility spillovers among the East Asian equity markets," Journal of Asian Economics, Elsevier, vol. 21(3), pages 304-313, June.
    28. Cohen-Cole, Ethan & Patacchini, Eleonora & Zenou, Yves, 2011. "Systemic Risk and Network Formation in the Interbank Market," Research Papers in Economics 2011:6, Stockholm University, Department of Economics.
    29. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    30. Narayan, Paresh Kumar & Narayan, Seema & K.P, Prabheesh, 2014. "Stock returns, mutual fund flows and spillover shocks," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 146-162.
    31. Bostanci, Gorkem & Yilmaz, Kamil, 2020. "How connected is the global sovereign credit risk network?," Journal of Banking & Finance, Elsevier, vol. 113(C).
    32. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    33. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    34. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    35. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    36. Yanan Li & David E. Giles, 2015. "Modelling Volatility Spillover Effects Between Developed Stock Markets and Asian Emerging Stock Markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(2), pages 155-177, March.
    37. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    38. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    39. Bohn, Henning & Tesar, Linda L, 1996. "U.S. Equity Investment in Foreign Markets: Portfolio Rebalancing or Return Chasing?," American Economic Review, American Economic Association, vol. 86(2), pages 77-81, May.
    40. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    41. MacDonald, Ronald & Sogiakas, Vasilios & Tsopanakis, Andreas, 2018. "Volatility co-movements and spillover effects within the Eurozone economies: A multivariate GARCH approach using the financial stress index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 17-36.
    42. Gounopoulos, Dimitrios & Molyneux, Philip & Staikouras, Sotiris K. & Wilson, John O.S. & Zhao, Gang, 2013. "Exchange rate risk and the equity performance of financial intermediaries," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 271-282.
    43. Yoon, Seong-Min & Al Mamun, Md & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Network connectedness and net spillover between financial and commodity markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 801-818.
    44. Cohen-Cole, Ethan & Kirilenko, Andrei & Patacchini, Eleonora, 2014. "Trading networks and liquidity provision," Journal of Financial Economics, Elsevier, vol. 113(2), pages 235-251.
    45. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2013. "Intraday volatility spillovers between spot and futures indices: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1795-1802.
    46. Zhou, Xiangyi & Zhang, Weijin & Zhang, Jie, 2012. "Volatility spillovers between the Chinese and world equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 247-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    2. Chen, Bing & Li, Li & Peng, Fei & Anwar, Sajid, 2020. "Risk contagion in the banking network: New evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Zhou, Wei & Chen, Yan & Chen, Jin, 2024. "Dynamic volatility spillover and market emergency: Matching and forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    4. Shaowei Chen & Long Guo & Weike Zhang, 2023. "Financial Risk Measurement and Spatial Spillover Effects Based on an Imported Financial Risk Network: Evidence from Countries along the Belt and Road," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    5. Wang, Ze & Gao, Xiangyun & Huang, Shupei & Sun, Qingru & Chen, Zhihua & Tang, Renwu & Di, Zengru, 2022. "Measuring systemic risk contribution of global stock markets: A dynamic tail risk network approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Si, Deng-Kui & Li, Xiao-Lin & Xu, XuChuan & Fang, Yi, 2021. "The risk spillover effect of the COVID-19 pandemic on energy sector: Evidence from China," Energy Economics, Elsevier, vol. 102(C).
    7. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    8. Wafa Miled & Zied Ftiti & Jean-Michel Sahut, 2022. "Spatial contagion between financial markets: new evidence of asymmetric measures," Annals of Operations Research, Springer, vol. 313(2), pages 1183-1220, June.
    9. Huang, Wei-Qiang & Liu, Peipei, 2023. "Cross-market risk spillovers among sovereign CDS, stock, foreign exchange and commodity markets: An interacting network perspective," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weiping & Zhuang, Xintian & Lu, Yang & Wang, Jian, 2020. "Spatial linkage of volatility spillovers and its explanation across G20 stock markets: A network framework," International Review of Financial Analysis, Elsevier, vol. 71(C).
    2. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    3. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    4. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    5. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    6. Cesario Mateus & Miramir Bagirov & Irina Mateus, 2024. "Return and volatility connectedness and net directional patterns in spillover transmissions: East and Southeast Asian equity markets," International Review of Finance, International Review of Finance Ltd., vol. 24(1), pages 83-103, March.
    7. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    8. Li, Yanshuang & Zhuang, Xintian & Wang, Jian, 2021. "Analysis of the cross-region risk contagion effect in stock market based on volatility spillover networks: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    9. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    10. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Foglia, Matteo & Addi, Abdelhamid & Wang, Gang-Jin & Angelini, Eliana, 2022. "Bearish Vs Bullish risk network: A Eurozone financial system analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    12. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    13. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    14. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. Feng, Yusen & Wang, Gang-Jin & Zhu, You & Xie, Chi, 2023. "Systemic risk spillovers and the determinants in the stock markets of the Belt and Road countries," Emerging Markets Review, Elsevier, vol. 55(C).
    16. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    17. Borjigin, Sumuya & Gao, Ting & Sun, Yafei & An, Biao, 2020. "For evil news rides fast, while good news baits later?—A network based analysis in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    18. Antonakakis, Nikolaos & Gabauer, David, 2017. "Refined Measures of Dynamic Connectedness based on TVP-VAR," MPRA Paper 78282, University Library of Munich, Germany.
    19. Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
    20. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Spatial spillover; Volatility network; Risk contagion; GARCH-BEKK model; Spatial Durbin model;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940819302815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.