IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v38y2021ics1544612319312267.html
   My bibliography  Save this article

Can small sample dataset be used for efficient internet loan credit risk assessment? Evidence from online peer to peer lending

Author

Listed:
  • Yu, Lean
  • Zhang, Xiaoming

Abstract

The emerging online peer to peer (P2P) lending platforms have only a small number of samples in the early stage, it is thus unable to conduct an efficient credit risk assessment on internet loan applicants. In order to solve the sample shortage issue, a virtual sample generation (VSG) methodology integrating multi-distribution mega-trend-diffusion (MD-MTD) and particle swarm optimization (PSO) algorithm is proposed for internet loan credit risk evaluation with small samples. The empirical results indicate that the proposed VSG methodology can greatly help to improve performance of the internet loan credit risk evaluation with small sample datasets.

Suggested Citation

  • Yu, Lean & Zhang, Xiaoming, 2021. "Can small sample dataset be used for efficient internet loan credit risk assessment? Evidence from online peer to peer lending," Finance Research Letters, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612319312267
    DOI: 10.1016/j.frl.2020.101521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319312267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    2. Dernoncourt, David & Hanczar, Blaise & Zucker, Jean-Daniel, 2014. "Analysis of feature selection stability on high dimension and small sample data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 681-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sha, Yezhou, 2022. "Rating manipulation and creditworthiness for platform economy: Evidence from peer-to-peer lending," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Lean Yu & Lihang Yu & Kaitao Yu, 2021. "A high-dimensionality-trait-driven learning paradigm for high dimensional credit classification," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gourieroux, Christian & Lu, Yang, 2019. "Least impulse response estimator for stress test exercises," Journal of Banking & Finance, Elsevier, vol. 103(C), pages 62-77.
    2. Yeh, Jen-Yin & Chiu, Hsin-Yu & Huang, Jhih-Huei, 2024. "Predicting failure of P2P lending platforms through machine learning: The case in China," Finance Research Letters, Elsevier, vol. 59(C).
    3. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    4. Yanhong Guo & Shuai Jiang & Wenjun Zhou & Chunyu Luo & Hui Xiong, 2021. "A predictive indicator using lender composition for loan evaluation in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    5. Xi Yang & Wenjuan Fan & Shanlin Yang, 2020. "Identifying the Influencing Factors on Investors’ Investment Behavior: An Empirical Study Focusing on the Chinese P2P Lending Market," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    6. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
    7. Ligang Zhou & Chao Ma, 2023. "A Comparison of Different Rules on Loans Evaluation in Peer-to-Peer Lending by Gradient Boosting Models Under Moving Windows with Two Timestamps," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1481-1504, December.
    8. Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
    9. Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
    10. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.
    11. Yuzhen Ma & Xinyang Wei & Gaoyun Yan & Xiaoyu He, 2023. "The Impact of Fintech Development on Air Pollution," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    12. Mousumi Munmun & Dongli Zhang & Charles C. Luo, 2024. "Peer-to-Peer Lending Performance Improvement: Learn from Lean Principles," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(1), pages 101-101, February.
    13. Ajay Byanjankar & József Mezei & Markku Heikkilä, 2021. "Data‐driven optimization of peer‐to‐peer lending portfolios based on the expected value framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 119-129, April.
    14. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    15. Chen, Pei-Fen & Lo, Shihmin & Tang, Hai-Yuan, 2022. "What if borrowers stop paying their loans? Investors’ rates of return on a peer-to-peer lending platform," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 359-377.
    16. Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
    17. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    18. Chen, Rongda & Chen, Yikai & Jin, Chenglu & Xu, Guorui & Bao, Weiwei & Guo, Kenan, 2021. "Characteristics and mechanisms of not-fully marketized interest rates: Evidence from Chinese online lending," Research in International Business and Finance, Elsevier, vol. 55(C).
    19. Qizhi Tao & Yizhe Dong & Ziming Lin, 0. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    20. Sha, Yezhou, 2022. "Rating manipulation and creditworthiness for platform economy: Evidence from peer-to-peer lending," International Review of Financial Analysis, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612319312267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.