Forecasting rate of return after extreme values when using AR-t-GARCH and QAR-Beta-t-EGARCH
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2017.09.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Lukáš Frýd, 2018. "Asymetrie během finančních krizí: asymetrická volatilita převyšuje důležitost asymetrické korelace [Asymmetry of Financial Time Series During the Financial Crisis: Asymmetric Volatility Outperforms," Politická ekonomie, Prague University of Economics and Business, vol. 2018(3), pages 302-329.
- José Rangel & Robert Engle, 2012.
"The Factor–Spline–GARCH Model for High and Low Frequency Correlations,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124.
- José Gonzalo Rangel & Robert F. Engle, 2011. "The Factor--Spline--GARCH Model for High and Low Frequency Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124, May.
- Rangel José Gonzalo & Engle Robert F., 2009. "The Factor-Spline-GARCH Model for High and Low Frequency Correlations," Working Papers 2009-03, Banco de México.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- Rosenberg, Joshua V. & Engle, Robert F., 2002.
"Empirical pricing kernels,"
Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
- Joshua Rosenberg & Robert F. Engle, 2000. "Empirical Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-014, New York University, Leonard N. Stern School of Business-.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018.
"Testing for leverage effects in the returns of US equities,"
Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effects in the Returns of US Equities," Documents de travail du Centre d'Economie de la Sorbonne 14022r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2018. "Testing for leverage effects in the returns of US equities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01917590, HAL.
- Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2017. "Testing for Leverage Effects in the Returns of US Equities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00973922, HAL.
- Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
- Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Szabolcs Blazsek & Hector Hernández, 2018. "Analysis of electricity prices for Central American countries using dynamic conditional score models," Empirical Economics, Springer, vol. 55(4), pages 1807-1848, December.
- Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
- Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
- Rossi, Alessandro & Gallo, Giampiero M., 2006.
"Volatility estimation via hidden Markov models,"
Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
- Alessandro Rossi & Giampiero M. Gallo, 2002. "Volatility Estimation via Hidden Markov Models," Econometrics Working Papers Archive wp2002_14, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, September.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, September.
More about this item
Keywords
Dow Jones Industrial Average (DJIA); Beta-t-EGARCH; Extreme values;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:24:y:2018:i:c:p:193-198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.