IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v22y2017icp169-174.html
   My bibliography  Save this article

Determining risk model confidence sets

Author

Listed:
  • Cummins, Mark
  • Dowling, Michael
  • Esposito, Francesco

Abstract

Two alternative approaches to identifying a model confidence set (MCS) are contrasted. Together with a specification of the established MCS test, we present a new version of a test that identifies a model set satisfying the MCS requirements and is characterised by an alternative model ranking p-value. We also contrast the two MCS approaches empirically, constructing a market risk model selection exercise for the Dow Jones Industrial Average. Our adapted MCS method is shown to lead to a smaller MCS, nested within the MCS determined by the popular MCS method, and allows greater distinction between models.

Suggested Citation

  • Cummins, Mark & Dowling, Michael & Esposito, Francesco, 2017. "Determining risk model confidence sets," Finance Research Letters, Elsevier, vol. 22(C), pages 169-174.
  • Handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:169-174
    DOI: 10.1016/j.frl.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316303427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    2. Francesco P. Esposito & Mark Cummins, 2016. "Multiple Hypothesis Testing of Market Risk Forecasting Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 381-399, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    2. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    3. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    4. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    5. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    6. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    7. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    8. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    9. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    10. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    12. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    13. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    14. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    15. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    16. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    17. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    18. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    19. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    20. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:169-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.