Topological Data Analysis Ball Mapper for Finance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
- Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- Peter F. Christoffersen & Francis X. Diebold, 2006.
"Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics,"
Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
- Peter F. Christoffersen & Francis X.Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," PIER Working Paper Archive 04-009, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
- Peter F. Christoffersen & Francis X. Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," NBER Working Papers 10009, National Bureau of Economic Research, Inc.
- Wanling Qiu & Simon Rudkin & Pawel Dlotko, 2020. "Refining Understanding of Corporate Failure through a Topological Data Analysis Mapping of Altman's Z-Score Model," Papers 2004.10318, arXiv.org.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
- Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rudkin, Simon & Rudkin, Wanling & Dłotko, Paweł, 2023. "On the topology of cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harri Pönkä, 2017.
"Predicting the direction of US stock markets using industry returns,"
Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
- Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
- Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
- Nyberg, Henri & Pönkä, Harri, 2016.
"International sign predictability of stock returns: The role of the United States,"
Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
- Henri Nyberg & Harri Pönkä, 2015. "International Sign Predictability of Stock Returns: The Role of the United States," CREATES Research Papers 2015-20, Department of Economics and Business Economics, Aarhus University.
- Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
- Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023.
"Binary response models for heterogeneous panel data with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
- Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
- Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
- Perry Sadorsky, 2021. "A Random Forests Approach to Predicting Clean Energy Stock Prices," JRFM, MDPI, vol. 14(2), pages 1-20, January.
- Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
- Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
- Luis H. R. Alvarez E. & Paavo Salminen, 2017.
"Timing in the presence of directional predictability: optimal stopping of skew Brownian motion,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
- Luis H. R. Alvarez E. & Paavo Salminen, 2016. "Timing in the Presence of Directional Predictability: Optimal Stopping of Skew Brownian Motion," Papers 1608.04537, arXiv.org.
- de Resende, Charlene C. & Pereira, Adriano C.M. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2017. "Investigating market efficiency through a forecasting model based on differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 199-212.
- Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017.
"Further evidence on bear market predictability: The role of the external finance premium,"
International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
- Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2013. "Further evidence on bear market predictability: The role of the external finance premium," MPRA Paper 49093, University Library of Munich, Germany.
- Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
- Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
- James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
- Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
- Harri Pönkä, 2018.
"Sentiment and sign predictability of stock returns,"
Economics Bulletin, AccessEcon, vol. 38(3), pages 1676-1684.
- Pönkä, Harri, 2017. "Sentiment and sign predictability of stock returns," MPRA Paper 81861, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.03622. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.