IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v71y2020i8p1161-1179.html
   My bibliography  Save this article

Machine learning models and cost-sensitive decision trees for bond rating prediction

Author

Listed:
  • Sami Ben Jabeur
  • Amir Sadaaoui
  • Asma Sghaier
  • Riadh Aloui

Abstract

Since the outbreak of the financial crisis, the major global credit rating agencies have implemented significant changes to their methodologies to assess the sovereign credit risk. Therefore, bond rating prediction has become an interesting potential for investors and financial institutions. Previous research studies in this field have applied traditional statistical methods to develop models which provide prediction accuracy. However, no overall distinguished methods have been used in predicting bond ratings. Moreover, recent studies have suggested ensembles of classifiers that may be used in bond rating prediction. This article proposes an improved machine learning aimed to predict the rating of financial bonds. We empirically compare the classifiers ranging from logistic regression and discriminant analysis to nonparametric classifiers, such as support vector machine, neural networks, the cost-sensitive decision tree algorithm and deep neural networks. Three real-world bond rating data sets were selected to check the effectiveness and the viability of the set of the classifiers. The experimental results confirm that data mining methods can represent an alternative to the traditional prediction models of bond rating.

Suggested Citation

  • Sami Ben Jabeur & Amir Sadaaoui & Asma Sghaier & Riadh Aloui, 2020. "Machine learning models and cost-sensitive decision trees for bond rating prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1161-1179, August.
  • Handle: RePEc:taf:tjorxx:v:71:y:2020:i:8:p:1161-1179
    DOI: 10.1080/01605682.2019.1581405
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2019.1581405
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2019.1581405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Cuixia & Nie, Yubing & Xu, Qifa, 2023. "A MIDAS multinomial logit model with applications for bond ratings," Global Finance Journal, Elsevier, vol. 57(C).
    2. Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
    3. Ghosh, Indranil & Jana, Rabin K. & David, Roubaud & Grebinevych, Oksana & Wanke, Peter & Tan, Yong, 2024. "Modelling financial stress during the COVID-19 pandemic: Prediction and deeper insights," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 680-698.
    4. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    5. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    6. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:71:y:2020:i:8:p:1161-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.