IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp291-302.html
   My bibliography  Save this article

Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach

Author

Listed:
  • Belaissaoui, Bouchra
  • Le Moullec, Yann
  • Favre, Eric

Abstract

The recovery of VOC (Volatile Organic Compounds) from air is a major issue in terms of minimizing the environmental impact of numerous industrial processes (chemistry, food, pharmaceutical, metallurgy, refrigeration…). Non destructive VOC capture technologies are preferentially used in order to enable the recycling of a large ratio of the emitted compounds. To that respect, condensation is attractive because it offers the possibility to recover the VOC from the air stream under liquid state thanks to a physical, non destructive, separation process. Nevertheless, a very low (cryogenic) condensation temperature is often required in order to achieve that target. In that case, a membrane VOC pre-concentration step can be of major interest in order to increase the VOC content of the condensation unit and possibly improve the energy efficiency of the overall operation. In this study, a systematic analysis of the energy efficiency (overall electrical energy needed per kg of recovered VOC) of a standalone condensation process is compared to a hybrid process based on membrane concentration + condensation. It is shown that the standalone condensation remains more energy efficient for high boiling VOC (e.g. toluene, octane, acetone), while a significant improvement of the energy efficiency is obtained with the hybrid process for intermediate to low boiling temperature VOC (e.g. propane, ethane, ethylene…). A generic map of the most energy efficient VOC recovery process as a function of the VOC boiling temperature is finally proposed and potential improvement of the hybrid approach, based on a retentate recycling strategy is discussed.

Suggested Citation

  • Belaissaoui, Bouchra & Le Moullec, Yann & Favre, Eric, 2016. "Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach," Energy, Elsevier, vol. 95(C), pages 291-302.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:291-302
    DOI: 10.1016/j.energy.2015.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghoreyshi, Ali Asghar & Sadeghifar, Hamidreza & Entezarion, Fereshteh, 2014. "Efficiency assessment of air stripping packed towers for removal of VOCs (volatile organic compounds) from industrial and drinking waters," Energy, Elsevier, vol. 73(C), pages 838-843.
    2. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    3. Bounaceur, Roda & Lape, Nancy & Roizard, Denis & Vallieres, Cécile & Favre, Eric, 2006. "Membrane processes for post-combustion carbon dioxide capture: A parametric study," Energy, Elsevier, vol. 31(14), pages 2556-2570.
    4. Özbuğday, Fatih Cemil & Erbas, Bahar Celikkol, 2015. "How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis," Energy, Elsevier, vol. 82(C), pages 734-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grisales Díaz, Victor Hugo & Willis, Mark J. & von Stosch, Moritz & Olivar Tost, Gerard & Prado-Rubio, Oscar, 2020. "Assessing the energy requirements for butanol production using fermentation tanks-in-series operated under vacuum," Renewable Energy, Elsevier, vol. 160(C), pages 1253-1264.
    2. Juexiu Li & Hongbo Zhang & Diwen Ying & Yalin Wang & Tonghua Sun & Jinping Jia, 2019. "In Plasma Catalytic Oxidation of Toluene Using Monolith CuO Foam as a Catalyst in a Wedged High Voltage Electrode Dielectric Barrier Discharge Reactor: Influence of Reaction Parameters and Byproduct C," IJERPH, MDPI, vol. 16(5), pages 1-14, February.
    3. Yuan Wang & Bin Zhou & Mengrong Yang & Gao Xiao & Hang Xiao & Xiaorong Dai, 2023. "Bibliometrics and Knowledge Map Analysis of Research Progress on Biological Treatments for Volatile Organic Compounds," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    4. Xu, Hao & Xu, Xiafan & Chen, Liubiao & Guo, Jia & Wang, Junjie, 2022. "A novel cryogenic condensation system combined with gas turbine with low carbon emission for volatile compounds recovery," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    2. Mehmet Akif DESTEK, 2018. "Dimensions of globalization and income inequality in transition economies: taking into account cross-sectional dependence," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 9, pages 5-25, December.
    3. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    4. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    5. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    6. Suvrat Dhanorkar & Enno Siemsen, 2021. "How Nudges Lead to Improved Energy Efficiency in Manufacturing: Evidence from Archival Data and a Field Study," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3735-3757, October.
    7. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    8. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    9. Matheus Koengkan, 2018. "The decline of environmental degradation by renewable energy consumption in the MERCOSUR countries: an approach with ARDL modeling," Environment Systems and Decisions, Springer, vol. 38(3), pages 415-425, September.
    10. Chien-Ming Chen, 2017. "Supply Chain Strategies and Carbon Intensity: The Roles of Process Leanness, Diversification Strategy, and Outsourcing," Journal of Business Ethics, Springer, vol. 143(3), pages 603-620, July.
    11. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    12. Suvrat S. Dhanorkar & Enno Siemsen & Kevin W. Linderman, 2018. "Promoting Change from the Outside: Directing Managerial Attention in the Implementation of Environmental Improvements," Management Science, INFORMS, vol. 64(6), pages 2535-2556, June.
    13. Rafał Ślefarski, 2019. "Study on the Combustion Process of Premixed Methane Flames with CO 2 Dilution at Elevated Pressures," Energies, MDPI, vol. 12(3), pages 1-17, January.
    14. Ofori, Isaac K. & Gbolonyo, Emmanuel & Ojong, Nathanael, 2022. "Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 365, pages 1-48.
    15. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    16. Vahid Mortezaeikia & Omid Tavakoli & Reza Yegani & Mohammadali Faramarzi, 2016. "Cyanobacterial CO 2 biofixation in batch and semi‐continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(2), pages 218-231, April.
    17. Valeria Costantini & Mariagrazia D’Angeli & Martina Mancini & Chiara Martini & Elena Paglialunga, 2024. "An Econometric Analysis of the Energy-Saving Performance of the Italian Plastic Manufacturing Sector," Energies, MDPI, vol. 17(4), pages 1-29, February.
    18. Zoundi, Zakaria, 2017. "CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1067-1075.
    19. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    20. Dung Tien Pham & Hieu Van Pham & Tuyen Quang Dang, 2023. "Renewable Energy Consumption, Energy Efficiency, Trade, Economic Development and FDI on Climate Change in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 8-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:291-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.