IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp181-188.html
   My bibliography  Save this article

A dynamic optimization on economic energy efficiency in development: A numerical case of China

Author

Listed:
  • Wang, Dong

Abstract

This paper is based on dynamic optimization methodology to investigate the economic energy efficiency issues in developing countries. The paper introduces some definitions about energy efficiency both in economics and physics, and establishes a quantitative way for measuring the economic energy efficiency. The linkage between economic energy efficiency, energy consumption and other macroeconomic variables is demonstrated primarily. Using the methodology of dynamic optimization, a maximum problem of economic energy efficiency over time, which is subjected to the extended Solow growth model and instantaneous investment rate, is modelled. In this model, the energy consumption is set as a control variable and the capital is regarded as a state variable. The analytic solutions can be derived and the diagrammatic analysis provides saddle-point equilibrium. A numerical simulation based on China is also presented; meanwhile, the optimal paths of investment and energy consumption can be drawn. The dynamic optimization encourages governments in developing countries to pursue higher economic energy efficiency by controlling the energy consumption and regulating the investment state as it can conserve energy without influencing the achievement of steady state in terms of Solow model. If that, a sustainable development will be achieved.

Suggested Citation

  • Wang, Dong, 2014. "A dynamic optimization on economic energy efficiency in development: A numerical case of China," Energy, Elsevier, vol. 66(C), pages 181-188.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:181-188
    DOI: 10.1016/j.energy.2014.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Brennan, Timothy J., 2010. "Optimal energy efficiency policies and regulatory demand-side management tests: How well do they match?," Energy Policy, Elsevier, vol. 38(8), pages 3874-3885, August.
    3. Forster, Bruce A., 1980. "Optimal energy use in a polluted environment," Journal of Environmental Economics and Management, Elsevier, vol. 7(4), pages 321-333, December.
    4. Klaus Conrad, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," CESifo Working Paper Series 552, CESifo.
    5. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    6. Ayres, Robert U. & Turton, Hal & Casten, Tom, 2007. "Energy efficiency, sustainability and economic growth," Energy, Elsevier, vol. 32(5), pages 634-648.
    7. Garg, Prem C. & Sweeney, James L., 1978. "Optimal growth with depletable resources," Resources and Energy, Elsevier, vol. 1(1), pages 43-56, September.
    8. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    9. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    10. Dimopoulos, George G. & Stefanatos, Iason C. & Kakalis, Nikolaos M.P., 2013. "Exergy analysis and optimisation of a steam methane pre-reforming system," Energy, Elsevier, vol. 58(C), pages 17-27.
    11. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    12. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    13. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    14. Pindyck, Robert S, 1980. "Uncertainty and Exhaustible Resource Markets," Journal of Political Economy, University of Chicago Press, vol. 88(6), pages 1203-1225, December.
    15. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    16. Markides, Christos N. & Smith, Thomas C.B., 2011. "A dynamic model for the efficiency optimization of an oscillatory low grade heat engine," Energy, Elsevier, vol. 36(12), pages 6967-6980.
    17. Conrad, Klaus, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," Discussion Papers 602, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    18. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Amy H.I. & Chen, Hsing Hung & Chen, Silu, 2015. "Suitable organization forms for knowledge management to attain sustainable competitive advantage in the renewable energy industry," Energy, Elsevier, vol. 89(C), pages 1057-1064.
    2. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    3. Zhihai Yang & Dong Wang & Tianyi Du & Anlu Zhang & Yixiao Zhou, 2018. "Total-Factor Energy Efficiency in China’s Agricultural Sector: Trends, Disparities and Potentials," Energies, MDPI, vol. 11(4), pages 1-16, April.
    4. Deng, Qianli & Jiang, Xianglin & Zhang, Limao & Cui, Qingbin, 2015. "Making optimal investment decisions for energy service companies under uncertainty: A case study," Energy, Elsevier, vol. 88(C), pages 234-243.
    5. Back, Jaime André & Tedesco, Leonel Pablo & Molz, Rolf Fredi & Nara, Elpidio Oscar Benitez, 2016. "An embedded system approach for energy monitoring and analysis in industrial processes," Energy, Elsevier, vol. 115(P1), pages 811-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dong, 2012. "A Dynamic Optimization on Energy Efficiency in Developing Countries," MPRA Paper 43749, University Library of Munich, Germany.
    2. Sweeney, James L., 1993. "Economic theory of depletable resources: An introduction," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 17, pages 759-854, Elsevier.
    3. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    4. Di Vita, Giuseppe, 2007. "Exhaustible resources and secondary materials: A macroeconomic analysis," Ecological Economics, Elsevier, vol. 63(1), pages 138-148, June.
    5. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    6. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    7. Julia M. Puaschunder, 2021. "Climate Growth Theory," RAIS Conference Proceedings 2021 0084, Research Association for Interdisciplinary Studies.
    8. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    9. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    10. Zsuzsanna Csereklyei & M. d. Mar Rubio-Varas & David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, , vol. 37(2), pages 223-256, April.
    11. Frank den Butter, Marjan W. Hofkes, 2001. "Endogenous technology and environmental quality in economic models," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 1(1/2), pages 32-44.
    12. Steinberger, Julia K. & van Niel, Johan & Bourg, Dominique, 2009. "Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy," Energy Policy, Elsevier, vol. 37(1), pages 361-370, January.
    13. Wei-Bin Zhang, 2015. "Oscillations in a Growth Model with Endogenous Wealth, Resource, Housing, and Elastic Labour Supply," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(9), pages 458-472, September.
    14. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    15. Toman, Michael & Krautkraemer, Jeffrey, 2003. "Fundamental Economics of Depletable Energy Supply," RFF Working Paper Series dp-03-01, Resources for the Future.
    16. Eiji Sawada & Shunsuke Managi, 2014. "Effects of Technological Change on Non-renewable Resource Extraction and Exploration," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-12, December.
    17. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    18. Wei-Bin ZHANG, 2014. "Human Capital, Wealth, and Renewable Resources," Expert Journal of Economics, Sprint Investify, vol. 2(1), pages 1-20.
    19. van den Bremer, Ton & van der Ploeg, Frederick & Wills, Samuel, 2016. "The Elephant In The Ground: Managing Oil And Sovereign Wealth," European Economic Review, Elsevier, vol. 82(C), pages 113-131.
    20. David I. Stern, 2017. "How accurate are energy intensity projections?," Climatic Change, Springer, vol. 143(3), pages 537-545, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:181-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.