IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs036054422101937x.html
   My bibliography  Save this article

Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander

Author

Listed:
  • Murthy, Anarghya Ananda
  • Norris, Stuart
  • Subiantoro, Alison

Abstract

In this paper, a four-intersecting-vane-rotary expander prototype is presented, and the performance was measured experimentally in dynamic and static conditions. The mechanism is different from conventional rotary vane machines because it has a non-circular stator with radius of between 35.7 and 40.7 mm. The prototype was designed to be eventually implemented in a refrigeration system. However, for testing compressed air was used as the working fluid. The expander was tested at rotational speeds of up to 1750 rpm, suction pressures up to 5 bar(g) and a discharge pressure of 0 bar(g). The effect of different operating parameters and lubricating oil grades on the expander was experimentally studied under dynamic conditions. Then, the internal leakage characteristics of the prototype was analyzed under static conditions. The maximum volumetric and isentropic efficiencies measured were 31.2 % and 45.6 %, respectively. Generally, higher speed and a more viscous oil improved the volumetric efficiency. The expander's isentropic efficiency was significantly affected by the suction pressure, viscosity of oil and rotational speed. The static leakage test showed that the prototype's housing was properly sealed. The average contributions of internal leakages through the radial clearance, vane tips, rotor slot and end face gaps were 37.2 %, 33.3 %, 16.2 % and 14.1 %, respectively. It was observed that the internal leakage paths were generally independent of each other.

Suggested Citation

  • Murthy, Anarghya Ananda & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422101937x
    DOI: 10.1016/j.energy.2021.121689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101937X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    2. Jiang, Yuntao & Ma, Yitai & Fu, Lin & Li, Minxia, 2013. "Some design features of CO2 two-rolling piston expander," Energy, Elsevier, vol. 55(C), pages 916-924.
    3. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    4. Vodicka, Vaclav & Novotny, Vaclav & Zeleny, Zbynek & Mascuch, Jakub & Kolovratnik, Michal, 2019. "Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander," Energy, Elsevier, vol. 189(C).
    5. Badr, O. & Probert, S.D. & O'Callaghan, P.W., 1985. "Multi-vane expanders: Internal-leakage losses," Applied Energy, Elsevier, vol. 20(1), pages 1-46.
    6. Mascuch, Jakub & Novotny, Vaclav & Vodicka, Vaclav & Spale, Jan & Zeleny, Zbynek, 2020. "Experimental development of a kilowatt-scale biomass fired micro – CHP unit based on ORC with rotary vane expander," Renewable Energy, Elsevier, vol. 147(P3), pages 2882-2895.
    7. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    8. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    9. Fanti, Gabriel Rossi & Romão, Douglas Araújo & de Almeida, Ricardo Barbosa & de Mello, Paulo Eduardo Batista, 2020. "Influence of flank clearance on the performance of a scroll expander prototype," Energy, Elsevier, vol. 193(C).
    10. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).
    11. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).
    12. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    2. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    3. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    4. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    5. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).
    6. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Wang, Yan & Lei, Biao & Wu, Yuting, 2022. "Performance limits of the single screw expander in organic Rankine cycle with ensemble learning and hyperdimensional evolutionary many-objective optimization algorithm intervention," Energy, Elsevier, vol. 245(C).
    7. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    8. Naseri, Ali & Moradi, Ramin & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery," Energy, Elsevier, vol. 253(C).
    9. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    10. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    11. Ali Naseri & Ramin Moradi & Luca Cioccolanti & Alison Subiantoro, 2023. "Impact of the Lubricant on a Modified Revolving Vane Expander (M-RVE) in an Organic Rankine Cycle System," Energies, MDPI, vol. 16(14), pages 1-17, July.
    12. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    13. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    14. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    15. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    17. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).
    18. Zhang, Jianan & Qin, Kan & Li, Daijin & Luo, Kai & Dang, Jianjun, 2020. "Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles," Energy, Elsevier, vol. 192(C).
    19. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    20. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422101937x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.