IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1420-1425.html
   My bibliography  Save this article

Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse

Author

Listed:
  • Sahoo, Abanti
  • Ram, Deo Karan

Abstract

Experiments are carried out to determine the effects of different system parameters viz. gasification temperature, equivalence ratio, steam to biomass ratio and bed materials acting as catalyst for the production of hydrogen from sugarcane bagasse. Energy audit report is proposed for the gasification process where net energy output is calculated to be 5.296 kW h for 1.0 kg of feed. A mathematical expression is developed for the yield of hydrogen by correlating above mentioned system parameters. Calculated values of hydrogen yield thus obtained are compared against the experimentally observed values. Energy balance gives 56 gms of the hydrogen production per kg of dry sugarcane bagasse. Carbon conversion efficiency and the cold gas efficiency are calculated to be 89.34% and 80.65% respectively. The optimum hydrogen yield is observed to be 37.98% on N2 and S free basis. This is achieved at a temperature of 700 °C, equivalence ratio of 0.25 and steam to biomass ratio of 0.5 with the bed material of 1:1 red mud – sand mixture. Heating value of hydrogen obtained from the product gas is found to match with the calculated net energy output implying the satisfactory performance of the gasifier with respect to hydrogen yield.

Suggested Citation

  • Sahoo, Abanti & Ram, Deo Karan, 2015. "Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse," Energy, Elsevier, vol. 90(P2), pages 1420-1425.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1420-1425
    DOI: 10.1016/j.energy.2015.06.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500852X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    2. R. Rao, T & Ram. Bheemarasetti, J.V, 2001. "Minimum fluidization velocities of mixtures of biomass and sands," Energy, Elsevier, vol. 26(6), pages 633-644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Widjaya, Elita R. & Chen, Guangnan & Bowtell, Les & Hills, Catherine, 2018. "Gasification of non-woody biomass: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 184-193.
    2. Benedikt, F. & Schmid, J.C. & Fuchs, J. & Mauerhofer, A.M. & Müller, S. & Hofbauer, H., 2018. "Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant," Energy, Elsevier, vol. 164(C), pages 329-343.
    3. Qitai Eri & Wenzhen Wu & Xinjun Zhao, 2017. "Numerical Investigation of the Air-Steam Biomass Gasification Process Based on Thermodynamic Equilibrium Model," Energies, MDPI, vol. 10(12), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    2. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    3. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    4. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    5. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    6. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    7. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    8. Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio & Burbano, Juan Carlos, 2010. "Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills," Energy, Elsevier, vol. 35(2), pages 1172-1180.
    9. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    10. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Cutz, L. & Haro, P. & Santana, D. & Johnsson, F., 2016. "Assessment of biomass energy sources and technologies: The case of Central America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1411-1431.
    12. Guiying Wu & Bangting Yu & Yanjun Guan & Xuehui Wu & Kai Zhang & Yongli Li, 2019. "Mixing Characteristics of Binary Mixture with Biomass in a Gas-Solid Rectangular Fluidized Bed," Energies, MDPI, vol. 12(10), pages 1-8, May.
    13. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    14. Sun, Z. & Jin, B. & Zhang, M. & Liu, R. & Zhang, Y., 2008. "Experimental studies on cotton stalk combustion in a fluidized bed," Energy, Elsevier, vol. 33(8), pages 1224-1232.
    15. Pedroso, Daniel Travieso & Machin, Einara Blanco & Proenza Pérez, Nestor & Braga, Lúcia Bollini & Silveira, José Luz, 2017. "Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry," Renewable Energy, Elsevier, vol. 114(PB), pages 464-479.
    16. Machin, Einara Blanco & Pedroso, Daniel Travieso & Machín, Adrian Blanco & Acosta, Daviel Gómez & Silva dos Santos, Maria Isabel & Solferini de Carvalho, Felipe & Pérez, Néstor Proenza & Pascual, Rodr, 2021. "Biomass integrated gasification-gas turbine combined cycle (BIG/GTCC) implementation in the Brazilian sugarcane industry: Economic and environmental appraisal," Renewable Energy, Elsevier, vol. 172(C), pages 529-540.
    17. Degerli, Bahar & Nazir, Serap & Sorgüven, Esra & Hitzmann, Bernd & Özilgen, Mustafa, 2015. "Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany," Energy, Elsevier, vol. 93(P1), pages 421-434.
    18. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    19. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    20. Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1420-1425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.