IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p2011-d234389.html
   My bibliography  Save this article

Mixing Characteristics of Binary Mixture with Biomass in a Gas-Solid Rectangular Fluidized Bed

Author

Listed:
  • Guiying Wu

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Bangting Yu

    (CNOOC Research Institute, Beijing 100028, China)

  • Yanjun Guan

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Xuehui Wu

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Yongli Li

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

Abstract

Aiming to better understand the biomass pyrolysis and gasification processes, a detailed experimental study of the mixing characteristics is conducted in a fluidized bed with binary mixtures. Rapeseed is used as biomass, and silica sand or resin as inert material. The effect of mixture composition, initial packing manner, and superficial gas velocity on the concentration distribution is investigated in a rectangular fluidized bed by means of photography and sampling methods. The results show that the mixture composition plays an important role in the axial solids profile of binary mixtures. The mixing behavior of binary mixture is dominated by the bubble movement. The axial distribution of binary mixtures becomes uniform with increasing superficial gas velocity, whilst no obvious effect of initial packing manner is observed in this study.

Suggested Citation

  • Guiying Wu & Bangting Yu & Yanjun Guan & Xuehui Wu & Kai Zhang & Yongli Li, 2019. "Mixing Characteristics of Binary Mixture with Biomass in a Gas-Solid Rectangular Fluidized Bed," Energies, MDPI, vol. 12(10), pages 1-8, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2011-:d:234389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/2011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/2011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rao, T & Ram. Bheemarasetti, J.V, 2001. "Minimum fluidization velocities of mixtures of biomass and sands," Energy, Elsevier, vol. 26(6), pages 633-644.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Abanti & Ram, Deo Karan, 2015. "Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse," Energy, Elsevier, vol. 90(P2), pages 1420-1425.
    2. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    3. Arromdee, Porametr & Kuprianov, Vladimir I., 2012. "Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material," Applied Energy, Elsevier, vol. 97(C), pages 470-482.
    4. Sun, Zhi-Ao & Jin, Bao-Sheng & Zhang, Ming-Yao & Liu, Ren-Ping & Zhang, Yong, 2008. "Experimental study on cotton stalk combustion in a circulating fluidized bed," Applied Energy, Elsevier, vol. 85(11), pages 1027-1040, November.
    5. Sun, Z. & Jin, B. & Zhang, M. & Liu, R. & Zhang, Y., 2008. "Experimental studies on cotton stalk combustion in a fluidized bed," Energy, Elsevier, vol. 33(8), pages 1224-1232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2011-:d:234389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.