IDEAS home Printed from https://ideas.repec.org/p/tcr/wpaper/e98.html
   My bibliography  Save this paper

Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data

Author

Listed:
  • Shigeru Matsumoto

Abstract

Although both appliance ownership and usage patterns determine residential electricity consumption, it is less known how households actually use their appliances. In this study, we conduct conditional demand analyses to break down total household electricity consumption into a set of demand functions for electricity usage, across 13 appliance categories. We then examine how the socioeconomic characteristics of the households explain their appliance usage. Analysis of micro-level data from the Nation Survey of Family and Expenditure in Japan reveals that the family and income structure of households affect appliance usage. Specifically, we find that the presence of teenagers increases both air conditioner and dishwasher use, labor income and nonlabor income affect microwave usage in different ways, air conditioner usage decreases as the wife's income increases, and microwave usage decreases as the husband's income increases. Furthermore, we find that households use more electricity with new personal computers than old ones; this implies that the replacement of old personal computers increases electricity consumption.

Suggested Citation

  • Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Working Papers e098, Tokyo Center for Economic Research.
  • Handle: RePEc:tcr:wpaper:e98
    as

    Download full text from publisher

    File URL: https://www.tcer.or.jp/wp/pdf/e98.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Reuben Gronau & Daniel S. Hamermesh, 2008. "The Demand for Variety: A Household Production Perspective," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 562-572, August.
    3. Hsiao, Cheng & Mountain, Dean C & Illman, Kathleen Ho, 1995. "A Bayesian Integration of End-Use Metering and Conditional-Demand Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 315-326, July.
    4. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    5. Robert Bartels & Denzil G. Fiebig, 1990. "Integrating Direct Metering and Conditional Demand Analysis for Estimating End-Use Loads," The Energy Journal, , vol. 11(4), pages 79-98, October.
    6. Brencic, Vera & Young, Denise, 2009. "Time-saving innovations, time allocation, and energy use: Evidence from Canadian households," Ecological Economics, Elsevier, vol. 68(11), pages 2859-2867, September.
    7. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    8. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    9. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    10. Mark Jaccard & Alison Bailie & John Nyboer, 1996. "CO2 Emission Reduction Costs in the Residential Sector: Behavioral Parameters in a Bottom-Up Simulation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-134.
    11. Dennis J. Aigner & Cynts Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 81-98.
    12. Robert Bartels & Denzil G. Fiebig, 2000. "Residential End-Use Electricity Demand: Results from a Designed Experiment," The Energy Journal, , vol. 21(2), pages 51-81, April.
    13. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    14. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    15. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    16. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    17. Leahy, Eimear & Lyons, Seán & Walsh, Sharon, 2012. "Electrical Appliance Ownership and Usage in Ireland," Papers WP421, Economic and Social Research Institute (ESRI).
    18. Merih Aydinalp & V. Ismet Ugursal & Alan S. Fung, 2003. "Effects of socioeconomic factors on household appliance, lighting, and space cooling electricity consumption," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 20(3), pages 302-315.
    19. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    20. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    21. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    22. Newsham, Guy R. & Donnelly, Cara L., 2013. "A model of residential energy end-use in Canada: Using conditional demand analysis to suggest policy options for community energy planners," Energy Policy, Elsevier, vol. 59(C), pages 133-142.
    23. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    2. Lee, Soo-Jin & Song, Seung-Yeong, 2022. "Time-series analysis of the effects of building and household features on residential end-use energy," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    4. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    6. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    7. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    8. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
    9. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    10. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    11. Hannah Goozee, 2017. "Energy, Poverty and Development: A Primer for the Sustainable Development Goals," Working Papers id:11933, eSocialSciences.
    12. Hanne Marit Dalen and Bodil M. Larsen, 2015. "Residential End-use Electricity Demand: Development over Time," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    14. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    15. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Belaïd, Fateh & Garcia, Thomas, 2016. "Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data," Energy Economics, Elsevier, vol. 57(C), pages 204-214.
    17. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    18. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    19. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
    20. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).

    More about this item

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tcr:wpaper:e98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tctokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.