IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p329-343.html
   My bibliography  Save this article

Numerical optimization of combined heat and power Organic Rankine Cycles – Part B: Simultaneous design & part-load optimization

Author

Listed:
  • Capra, Federico
  • Martelli, Emanuele

Abstract

This two-part paper proposes an approach based on state-of-the-art numerical optimization methods for simultaneously determining the most profitable design solution and part-load operation of Combined Heat and Power Organic Rankine Cycles. Compared to the usual design practice, the important advantage of such an approach is to consider the part-load performance of the Organic Rankine Cycle at the design stage. In this second part (Part B), first the part-load model and optimization algorithm are presented and tested. Then, the part-load optimization algorithm is combined with the design optimization algorithm proposed in Part A, and the simultaneous approach is applied to a real-world test case. Computational results show that, with respect to a design optimized for full-load equivalent hours, the solution optimized for part-load operation has a lower investment cost, better part-load efficiencies, and thus up to 22% higher annual profit. The optimized part-load control strategy uses the sliding-pressure mode in the high-load range, and a combination of sliding-pressure and throttling in the low-load range.

Suggested Citation

  • Capra, Federico & Martelli, Emanuele, 2015. "Numerical optimization of combined heat and power Organic Rankine Cycles – Part B: Simultaneous design & part-load optimization," Energy, Elsevier, vol. 90(P1), pages 329-343.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:329-343
    DOI: 10.1016/j.energy.2015.06.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    2. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    3. Toffolo, Andrea & Lazzaretto, Andrea & Morandin, Matteo, 2010. "The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle," Energy, Elsevier, vol. 35(2), pages 976-981.
    4. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    5. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    6. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    7. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
    8. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    9. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martelli, Emanuele & Capra, Federico & Consonni, Stefano, 2015. "Numerical optimization of Combined Heat and Power Organic Rankine Cycles – Part A: Design optimization," Energy, Elsevier, vol. 90(P1), pages 310-328.
    2. Tieyu Gao & Changwei Liu, 2017. "Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy," Energies, MDPI, vol. 10(8), pages 1-25, August.
    3. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    4. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    5. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    6. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    8. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    9. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    10. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    11. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    12. Li, Jing & Pei, Gang & Ji, Jie & Bai, Xiaoman & Li, Pengcheng & Xia, Lijun, 2014. "Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications," Energy, Elsevier, vol. 77(C), pages 579-590.
    13. Lecompte, Steven & Gusev, Sergei & Vanslambrouck, Bruno & De Paepe, Michel, 2018. "Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation," Applied Energy, Elsevier, vol. 226(C), pages 82-106.
    14. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    15. Charles E. Sprouse, 2024. "Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review," Sustainability, MDPI, vol. 16(5), pages 1-74, February.
    16. Carlo Carcasci & Lapo Cheli & Pietro Lubello & Lorenzo Winchler, 2020. "Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines," Energies, MDPI, vol. 13(5), pages 1-15, March.
    17. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    18. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    19. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    20. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:329-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.