IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp957-964.html
   My bibliography  Save this article

Influences and mechanisms of graphene-doping on dehydrogenation properties of MgH2: Experimental and first-principles studies

Author

Listed:
  • Zhang, J.
  • Yu, X.F.
  • Mao, C.
  • Long, C.G.
  • Chen, J.
  • Zhou, D.W.

Abstract

Using experimental and first-principles calculations methods, a systematic investigation was performed on the dehydrogenation properties and mechanisms of MgH2-10 wt%G (graphene) composites acquired by ball milling. It was found that the doping of G played a vital catalytic role in improving the dehydrogenation properties of MgH2. SEM (scanning electron microscopy) observations revealed that G sheets were dispersedly embedded in MgH2 particles, which effectively inhibited the agglomerating of MgH2 particles during ball milling. XRD (X-ray diffraction) analyses showed that no new phases formed due to the immiscibility between MgH2(Mg) and G. DSC (Differential Scanning Calorimetry) and DTG (Differential Thermal Gravity) measurements indicated the initial dehydrogenation temperatures of MgH2-G composites were decreased and their dehydrogenation rate were also increased relative to pure-milled MgH2. The mechanisms analyses based on first-principles calculations suggested that the improved dehydrogenation properties of MgH2-G composites should be ascribed to the reduced dehydrogenation enthalpy and dehydrogenation activation energy of MgH2 upon the catalytic role of G.

Suggested Citation

  • Zhang, J. & Yu, X.F. & Mao, C. & Long, C.G. & Chen, J. & Zhou, D.W., 2015. "Influences and mechanisms of graphene-doping on dehydrogenation properties of MgH2: Experimental and first-principles studies," Energy, Elsevier, vol. 89(C), pages 957-964.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:957-964
    DOI: 10.1016/j.energy.2015.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ismail, M., 2015. "Effect of LaCl3 addition on the hydrogen storage properties of MgH2," Energy, Elsevier, vol. 79(C), pages 177-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
    2. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    3. Xie, XiuBo & Hou, Chuanxin & Chen, Chunguang & Sun, Xueqin & Pang, Yu & Zhang, Yuping & Yu, Ronghai & Wang, Bing & Du, Wei, 2020. "First-principles studies in Mg-based hydrogen storage Materials: A review," Energy, Elsevier, vol. 211(C).
    4. El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
    5. Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Eskandarany, M. Sherif & Al-Matrouk, H. & Shaban, Ehab & Al-Duweesh, Ahmed, 2015. "Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders," Energy, Elsevier, vol. 91(C), pages 274-282.
    2. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    3. Zhang, Wei & Cheng, Ying & Han, Da & Han, Shumin, 2015. "The hydrogen storage properties of MgH2–Fe3S4 composites," Energy, Elsevier, vol. 93(P1), pages 625-630.
    4. El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
    5. Dou, Binlin & Zhang, Hua & Cui, Guomin & He, Mingxing & Ruan, Chenjie & Wang, Zilong & Chen, Haisheng & Xu, Yujie & Jiang, Bo & Wu, Chunfei, 2019. "Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature," Energy, Elsevier, vol. 167(C), pages 1097-1106.
    6. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    7. Shen, Xiaochen & Wang, Qing & Wu, Qingquan & Guo, Siqi & Zhang, Zhengyan & Sun, Ziyang & Liu, Baishu & Wang, Zhibin & Zhao, Bin & Ding, Weiping, 2015. "CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution," Energy, Elsevier, vol. 90(P1), pages 464-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:957-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.