First-principles studies in Mg-based hydrogen storage Materials: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118959
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, J. & Yu, X.F. & Mao, C. & Long, C.G. & Chen, J. & Zhou, D.W., 2015. "Influences and mechanisms of graphene-doping on dehydrogenation properties of MgH2: Experimental and first-principles studies," Energy, Elsevier, vol. 89(C), pages 957-964.
- El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
- Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
- Chen, X.Y. & Chen, R.R. & Ding, X. & Fang, H.Z. & Li, X.Z. & Ding, H.S. & Su, Y.Q. & Guo, J.J. & Fu, H.Z., 2019. "Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution," Energy, Elsevier, vol. 166(C), pages 587-597.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuchen Liu & Djafar Chabane & Omar Elkedim, 2021. "Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review," Energies, MDPI, vol. 14(18), pages 1-22, September.
- Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
- Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).
- Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).
- Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
- Tian, Ying & Han, Jin & Bu, Yu & Qin, Chuan, 2023. "Simulation and analysis of fire and pressure reducing valve damage in on-board liquid hydrogen system of heavy-duty fuel cell trucks," Energy, Elsevier, vol. 276(C).
- Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
- El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
- Wang, Yanhong & Yin, Kaidong & Fan, Shuanshi & Lang, Xuemei & Yu, Chi & Wang, Shenglong & Li, Song, 2021. "The molecular insight into the “Zeolite-ice” as hydrogen storage material," Energy, Elsevier, vol. 217(C).
- Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
- Ma, Miaolian & Yang, Lingli & Ouyang, Liuzhang & Shao, Huaiyu & Zhu, Min, 2019. "Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling," Energy, Elsevier, vol. 167(C), pages 1205-1211.
- Joanna Czub & Akito Takasaki & Andreas Hoser & Manfred Reehuis & Łukasz Gondek, 2023. "Synthesis and Hydrogenation of the Ti 45−x V x Zr 38 Ni 17 (5 ≤ x ≤ 40) Mechanically Alloyed Materials," Energies, MDPI, vol. 16(16), pages 1-11, August.
More about this item
Keywords
First principles; Magnesium; Hydrogen energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320661. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.