IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v171y2016icp415-428.html
   My bibliography  Save this article

Analysis of an air-cooled chiller replacement project using a probabilistic approach for energy performance contracts

Author

Listed:
  • Lee, P.
  • Lam, P.T.I.
  • Lee, W.L.
  • Chan, E.H.W.

Abstract

Replacement of air-cooled chillers with water-cooled chillers for air-conditioning plants in existing buildings can yield a significant amount of energy savings, especially in a sub-tropical climate. However, due to variations in weather conditions and building operation patterns, the amount of actual energy saving is often uncertain in these retrofits. These uncertainties impose a risk of saving shortfalls when Energy Service Companies (ESCOs) guarantee building owners for a certain amount of energy savings in Energy Performance Contracting (EPC) projects. This study presents a probabilistic approach to estimating a range of possible energy savings with the associated confidence levels for chiller replacement in existing buildings, taking into account the annual variations in the influential parameters affecting energy savings. The influential factors include building cooling loads, system control and operation systems, as well as chiller plant characteristics. The proposed approach involves: the use of correlation analysis for identifying influential parameters; EnergyPlus for simulating energy use of chiller plant; and a Monte Carlo approach for simulating the probability of post-retrofit energy savings. A commercial building where the air-cooled chillers were replaced with water-cooled chillers is used to illustrate the proposed approach. Results show that the variations in annual energy savings for chiller replacement projects can be estimated with a defined degree of certainty. In the case study project, the possible annual energy savings during the post-retrofit period range from 1,149,000kWh (37.6% of baseline consumption) to 1,504,000kWh (49.2% of ditto) at 90% statistical significance. The risk mitigation measures for this type of energy retrofit are discussed as well.

Suggested Citation

  • Lee, P. & Lam, P.T.I. & Lee, W.L. & Chan, E.H.W., 2016. "Analysis of an air-cooled chiller replacement project using a probabilistic approach for energy performance contracts," Applied Energy, Elsevier, vol. 171(C), pages 415-428.
  • Handle: RePEc:eee:appene:v:171:y:2016:i:c:p:415-428
    DOI: 10.1016/j.apenergy.2016.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630349X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    2. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    3. Mathew, Paul & Kromer, J. Stephen & Sezgen, Osman & Meyers, Steven, 2005. "Actuarial pricing of energy efficiency projects: lessons foul and fair," Energy Policy, Elsevier, vol. 33(10), pages 1319-1328, July.
    4. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    5. Mills, Evan & Kromer, Steve & Weiss, Gary & Mathew, Paul A., 2006. "From volatility to value: analysing and managing financial and performance risk in energy savings projects," Energy Policy, Elsevier, vol. 34(2), pages 188-199, January.
    6. Larsen, Peter H. & Goldman, Charles A. & Satchwell, Andrew, 2012. "Evolution of the U.S. energy service company industry: Market size and project performance from 1990–2008," Energy Policy, Elsevier, vol. 50(C), pages 802-820.
    7. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    8. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    9. Jackson, Jerry, 2010. "Promoting energy efficiency investments with risk management decision tools," Energy Policy, Elsevier, vol. 38(8), pages 3865-3873, August.
    10. Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
    11. Gustafsson, Stig-Inge, 1998. "Sensitivity analysis of building energy retrofits," Applied Energy, Elsevier, vol. 61(1), pages 13-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Wei & Pan, Mi, 2019. "Opportunities and risks of implementing zero-carbon building policy for cities: Hong Kong case," Applied Energy, Elsevier, vol. 256(C).
    2. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    3. Walker, Shalika & Labeodan, Timilehin & Boxem, Gert & Maassen, Wim & Zeiler, Wim, 2018. "An assessment methodology of sustainable energy transition scenarios for realizing energy neutral neighborhoods," Applied Energy, Elsevier, vol. 228(C), pages 2346-2360.
    4. Wenjie Zhang & Hongping Yuan, 2019. "Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend?," Energies, MDPI, vol. 12(8), pages 1-18, April.
    5. Hongquan Ruan & Xin Gao & Chaoxuan Mao, 2018. "Empirical Study on Annual Energy-Saving Performance of Energy Performance Contracting in China," Sustainability, MDPI, vol. 10(5), pages 1-25, May.
    6. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    2. Deng, Qianli & Jiang, Xianglin & Zhang, Limao & Cui, Qingbin, 2015. "Making optimal investment decisions for energy service companies under uncertainty: A case study," Energy, Elsevier, vol. 88(C), pages 234-243.
    3. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    4. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    5. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    6. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    7. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    8. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    9. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    10. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    11. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    12. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    13. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    14. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    15. Klinke, Sandra, 2018. "The determinants for adoption of energy supply contracting: Empirical evidence from the Swiss market," Energy Policy, Elsevier, vol. 118(C), pages 221-231.
    16. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    17. Garbuzova-Schlifter, Maria & Madlener, Reinhard, 2016. "AHP-based risk analysis of energy performance contracting projects in Russia," Energy Policy, Elsevier, vol. 97(C), pages 559-581.
    18. Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
    19. Massimiliano Manfren & Benedetto Nastasi, 2020. "Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings," Energies, MDPI, vol. 13(3), pages 1-14, February.
    20. Akman, Ugur & Okay, Esin & Okay, Nesrin, 2013. "Current snapshot of the Turkish ESCO market," Energy Policy, Elsevier, vol. 60(C), pages 106-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:415-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.