IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp381-389.html
   My bibliography  Save this article

Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle

Author

Listed:
  • Wu, Li-Jie
  • Qin, Yu
  • Hojo, Toshimasa
  • Li, Yu-You

Abstract

Thermophilic (55 °C)-mesophilic(35 °C) and hyper-thermophilic(70 °C)-mesophilic TPAD-R (temperature-phased anaerobic digestion with recycle) were conducted to compare and evaluate the operation performance to treat WAS (waste activated sludge) with the MD (conventional mesophilic anaerobic digestion). TPAD-R was based on the TPAD (temperature-phased anaerobic digestion), and introduced a recycle system from the end mesophilic stage to the front stage. Thermophilic-mesophilic TPAD-R produced more biogas 0.99 L/g VS (volatile solids) reduced/d than MD 0.83 L/g VS reduced/d. In thermophilic-mesophilic TPAD-R 35.7% and 18.7% of WAS was converted to methane in the thermophilic stage and in the mesophilic stage, respectively, according to a COD balance. Solids reduction was improved to a similar extent in thermophilic-mesophilic TPAD-R and hyper-thermophilic-mesophilic TPAD-R, which was 10% higher than that in MD (approximately 40% of VS reduction). Hydrolysis, acidogenesis and methanogenesis analysis indicated that thermophilic and hyper-thermophilic stage accelerated the hydrolysis rate of TPAD-R, 0.053 gCOD/gVS/d and 0.040 gCOD/gVS/d, respectively, compared to about 0.025 gCOD/gVS/d in MD. In addition, thermophilic-mesophilic TPAD-R achieved more surplus energy than hyper-thermophilic-mesophilic TPAD-R and MD.

Suggested Citation

  • Wu, Li-Jie & Qin, Yu & Hojo, Toshimasa & Li, Yu-You, 2015. "Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle," Energy, Elsevier, vol. 87(C), pages 381-389.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:381-389
    DOI: 10.1016/j.energy.2015.04.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    2. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    3. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    2. Zhou, Aijuan & Zhang, Jiaguang & Varrone, Cristiano & Wen, Kaili & Wang, Guoying & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2017. "Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments," Energy, Elsevier, vol. 137(C), pages 457-467.
    3. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    4. Wang, Ruikun & Zhao, Zhenghui & Liu, Jianzhong & Lv, Yukun & Ye, Xuemin, 2016. "Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation," Energy, Elsevier, vol. 113(C), pages 319-327.
    5. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    6. Nie, Yulun & Chen, Rong & Tian, Xike & Li, Yu-You, 2017. "Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activ," Energy, Elsevier, vol. 139(C), pages 459-467.
    7. Qin, Yu & Wu, Jing & Xiao, Benyi & Cong, Ming & Hojo, Toshimasa & Cheng, Jun & Li, Yu-You, 2019. "Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste," Energy, Elsevier, vol. 179(C), pages 1235-1245.
    8. Algapani, Dalal E. & Qiao, Wei & Ricci, Marina & Bianchi, Davide & M. Wandera, Simon & Adani, Fabrizio & Dong, Renjie, 2019. "Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation," Renewable Energy, Elsevier, vol. 130(C), pages 1108-1115.
    9. Min Lin & Aijie Wang & Wei Qiao & Simon M. Wandera & Jiahao Zhang & Renjie Dong, 2022. "The Material Flow and Stability Performance of the Anaerobic Digestion of Pig Manure after (Hyper)-Thermophilic Hydrolysis Is Introduced: A Comparison with a Single-Stage Process," Sustainability, MDPI, vol. 14(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    2. Liao, Xiaocong & Li, Huan, 2015. "Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation," Applied Energy, Elsevier, vol. 148(C), pages 252-259.
    3. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    4. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    5. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    6. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    8. Notodarmojo, Peni Astrini & Fujiwara, Takeshi & Habuer, & Pham Van, Dinh, 2022. "Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis," Energy, Elsevier, vol. 239(PC).
    9. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    10. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    11. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    12. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    13. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    14. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    15. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    16. Du, Jing & Qian, Yuting & Xi, Yonglan & Lü, Xiwu, 2019. "Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw," Renewable Energy, Elsevier, vol. 139(C), pages 261-267.
    17. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    18. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    19. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    20. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:381-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.