IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp609-619.html
   My bibliography  Save this article

A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations

Author

Listed:
  • Wang, Yi-Fei
  • Chen, Qun

Abstract

Energy conservation of HENs (heat exchanger networks) has been attaching more and more attentions with all kinds of methods for operation optimization. Several methods optimize the temperature and/or pressure differential set points for HENs, but cannot control the components directly, which has to seek the help of some control strategies. This paper introduces a direct optimal control strategy of VSPs (variable speed pumps) based on the newly proposed thermal resistance-based optimization method together with the physical models of each component in HENs, which can directly calculate the optimal rotation frequencies of each VSP for optimal operation. To illustrate this method, a series of experiments are performed with a VWV (variable water volume) HEN, including a group of experiments to determine the characteristic parameters in the physical models of each component, and the others to test the HEN performances with the optimal operating parameters and other alternative ones. The results show that the newly proposed direct control strategy can directly get the optimal rotation frequencies of each VSP with the least total power consumption under specific system requirements and constraints. On this basis, for different system requirements, different operating frequencies of VSPs are optimized to demonstrate the universality of the direct optimal control strategy.

Suggested Citation

  • Wang, Yi-Fei & Chen, Qun, 2015. "A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations," Energy, Elsevier, vol. 85(C), pages 609-619.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:609-619
    DOI: 10.1016/j.energy.2015.03.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    2. Loveday, D. L. & Virk, G. S., 1992. "Artificial intelligence for buildings," Applied Energy, Elsevier, vol. 41(3), pages 201-221.
    3. Miki, H. & Shimizu, A., 1998. "Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system," Applied Energy, Elsevier, vol. 61(1), pages 41-56, September.
    4. Candanedo, J.A. & Dehkordi, V.R. & Stylianou, M., 2013. "Model-based predictive control of an ice storage device in a building cooling system," Applied Energy, Elsevier, vol. 111(C), pages 1032-1045.
    5. Ma, Zhenjun & Wang, Shengwei & Xiao, Fu, 2009. "Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation," Applied Energy, Elsevier, vol. 86(5), pages 712-721, May.
    6. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    7. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    8. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wei Shao & Shuo Wang & Wenpu Wang & Kun Shao & Qi Xiao & Zheng Cui, 2023. "Experiment and Simulation on a Refrigeration Ventilation System for Deep Metal Mines," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    3. Sun, Lin & Zha, Xinlang & Luo, Xionglin, 2018. "Coordination between bypass control and economic optimization for heat exchanger network," Energy, Elsevier, vol. 160(C), pages 318-329.
    4. Gu, Yandong & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Zhang, Fan & Wang, Peng & Appiah, Desmond & Liu, Yong, 2019. "Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method," Energy, Elsevier, vol. 170(C), pages 986-997.
    5. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    6. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    7. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    8. Li, Xia & Chen, Qun & Chen, Xi & He, Ke-Lun & Hao, Jun-Hong, 2020. "Graph theory-based heat current analysis method for supercritical CO2 power generation system," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    2. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    3. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    4. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    5. Mu, Baojie & Li, Yaoyu & House, John M. & Salsbury, Timothy I., 2017. "Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control," Applied Energy, Elsevier, vol. 208(C), pages 766-781.
    6. Ma, Keyan & Liu, Mingsheng & Zhang, Jili, 2021. "Online optimization method of cooling water system based on the heat transfer model for cooling tower," Energy, Elsevier, vol. 231(C).
    7. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    9. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    10. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    11. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    12. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    13. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    14. Xiaoyu Xu & Chun Chang & Xinxin Guo & Mingzhi Zhao, 2023. "Experimental and Numerical Study of the Ice Storage Process and Material Properties of Ice Storage Coils," Energies, MDPI, vol. 16(14), pages 1-18, July.
    15. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    16. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    17. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    18. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    19. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    20. Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:609-619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.