IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp318-329.html
   My bibliography  Save this article

Coordination between bypass control and economic optimization for heat exchanger network

Author

Listed:
  • Sun, Lin
  • Zha, Xinlang
  • Luo, Xionglin

Abstract

The bypass is widely used for optimizing the operation of heat exchanger network (HEN) to maintain the control requirements. More attention on the bypass control strategy has been paid to the control performance without considering the economics. However, the economic efficiency is quite important to the industry with energy intensive production as energy prices to rise. Therefore, both the control performance and the economic efficiency should be considered simultaneously during the life cycle of HEN. In this work, firstly we proposed a methodology for two-stage coordination of bypass control and economic optimization (CBCEO). Then the one-step coordination between bypass control and economic optimization is developed based on two-stage CBCEO. Secondly, the margin of HEN is commonly optimized and can be calculated by the variation of bypass fractions, which is regarded as the objective function in this work. Then non-square relative gain array is utilized to obtain optimization variables and the optimal control structure is established. Thirdly, an optimization algorithm combining external penalty function with pattern search is used to solve this dynamic optimization problem (DOP). Finally, two case studies indicated that the proposed CBCEO strategy can achieve the purpose of effective control and optimal economic at the same time.

Suggested Citation

  • Sun, Lin & Zha, Xinlang & Luo, Xionglin, 2018. "Coordination between bypass control and economic optimization for heat exchanger network," Energy, Elsevier, vol. 160(C), pages 318-329.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:318-329
    DOI: 10.1016/j.energy.2018.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zubair, Syed M. & Sheikh, Anwar K. & Shaik, Mohammed N., 1992. "A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling," Energy, Elsevier, vol. 17(8), pages 769-776.
    2. Wang, Yi-Fei & Chen, Qun, 2015. "A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations," Energy, Elsevier, vol. 85(C), pages 609-619.
    3. Chen, Qun & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2009. "Optimization principles for convective heat transfer," Energy, Elsevier, vol. 34(9), pages 1199-1206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang, Peng & Zhao, Liwen & Liu, Guilian, 2022. "Optimal design of heat exchanger network considering the fouling throughout the operating cycle," Energy, Elsevier, vol. 241(C).
    2. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    3. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Dong, Zhe & Li, Bowen & Li, Junyi & Jiang, Di & Guo, Zhiwu & Huang, Xiaojin & Zhang, Zuoyi, 2021. "Passivity based control of heat exchanger networks with application to nuclear heating," Energy, Elsevier, vol. 223(C).
    6. Liu, Linlin & Li, Chenying & Gu, Siwen & Zhang, Lei & Du, Jian, 2020. "Optimization-based framework for the synthesis of heat exchanger networks incorporating controllability," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shicheng Wang & Chenyi Xu & Wei Liu & Zhichun Liu, 2019. "Numerical Study on Heat Transfer Performance in Packed Bed," Energies, MDPI, vol. 12(3), pages 1-22, January.
    2. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    3. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    4. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    5. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    6. Walker, Michael E. & Theregowda, Ranjani B. & Safari, Iman & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Hsieh, Ming-Kai & Miller, David C., 2013. "Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling," Energy, Elsevier, vol. 60(C), pages 139-147.
    7. Zhao, Xiaohuan & E, Jiaqiang & Zhang, Zhiqing & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Leng, Erwei & Han, Dandan & Hu, Wenyu, 2020. "A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle," Applied Energy, Elsevier, vol. 257(C).
    8. Sheikh, Anwar K & Zubair, Syed M & Younas, Muhammad & Budair, M.O, 2000. "A risk based heat exchanger analysis subject to fouling," Energy, Elsevier, vol. 25(5), pages 445-461.
    9. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    10. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    11. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    12. Cheng, Xuetao & Liang, Xingang, 2012. "Entransy loss in thermodynamic processes and its application," Energy, Elsevier, vol. 44(1), pages 964-972.
    13. Gu, Yandong & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Zhang, Fan & Wang, Peng & Appiah, Desmond & Liu, Yong, 2019. "Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method," Energy, Elsevier, vol. 170(C), pages 986-997.
    14. Walker, Michael E. & Safari, Iman & Theregowda, Ranjani B. & Hsieh, Ming-Kai & Abbasian, Javad & Arastoopour, Hamid & Dzombak, David A. & Miller, David C., 2012. "Economic impact of condenser fouling in existing thermoelectric power plants," Energy, Elsevier, vol. 44(1), pages 429-437.
    15. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    16. Bhardwaj, Saurabh & Dalal, Amaresh & Pati, Sukumar, 2015. "Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure," Energy, Elsevier, vol. 79(C), pages 467-481.
    17. Tian Zhao & Di Liu & Ke-Lun He & Xi Chen & Qun Chen, 2020. "An Integrated Three-Level Synergetic and Reliable Optimization Method Considering Heat Transfer Process, Component, and System," Energies, MDPI, vol. 13(16), pages 1-19, August.
    18. Oravec, Juraj & Horváthová, Michaela & Bakošová, Monika, 2020. "Energy efficient convex-lifting-based robust control of a heat exchanger," Energy, Elsevier, vol. 201(C).
    19. Wei Shao & Shuo Wang & Wenpu Wang & Kun Shao & Qi Xiao & Zheng Cui, 2023. "Experiment and Simulation on a Refrigeration Ventilation System for Deep Metal Mines," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    20. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:318-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.