IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp503-508.html
   My bibliography  Save this article

Analysis of the use of biomass as an energy alternative for the Portuguese textile dyeing industry

Author

Listed:
  • Nunes, L.J.R.
  • Matias, J.C.O.
  • Catalão, J.P.S.

Abstract

The energy efficiency and the development of environmentally correct policies are current topics, especially when applied to the industrial sector with the objective of increasing the competitiveness of the enterprises. Portuguese textile dyeing sector, being a major consumer sector of primary energy, needs to adopt measures to improve its competitiveness. Biomass appears to be a viable and preferred alternative energy source for the sector, while simultaneously develops an entire forest industry devoted to the supply of forest solid fuels. This work carries out a comprehensive PEST (political, economic, social and technological) analysis, which analyses Political, Economic, Social and Technological aspects of the replacement of the fossil fuels traditionally used in this sector by biomass, providing a framework of environmental factors that influence the strategic management of the companies. The main advantages are the reduction of external dependence on imported fuel due to the use of an endogenous renewable resource, the creation and preservation of jobs, the increased competitiveness of the sector by reducing energy costs, the use of national technology and the reduction of greenhouse gases emissions.

Suggested Citation

  • Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Analysis of the use of biomass as an energy alternative for the Portuguese textile dyeing industry," Energy, Elsevier, vol. 84(C), pages 503-508.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:503-508
    DOI: 10.1016/j.energy.2015.03.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakandala, Dilupa & Samaranayake, Premaratne & Lau, H.C.W., 2013. "A fuzzy-based decision support model for monitoring on-time delivery performance: A textile industry case study," European Journal of Operational Research, Elsevier, vol. 225(3), pages 507-517.
    2. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    3. Vitaliy Pogoretskyy, 2013. "Freedom of Transit and the Principles of Effective Right and Economic Cooperation: Can Systemic Interpretation of GATT Article V Promote Energy Security and the Development of an International Gas Mar," Journal of International Economic Law, Oxford University Press, vol. 16(2), pages 313-352, June.
    4. Umar, Mohd Shaharin & Jennings, Philip & Urmee, Tania, 2014. "Sustainable electricity generation from oil palm biomass wastes in Malaysia: An industry survey," Energy, Elsevier, vol. 67(C), pages 496-505.
    5. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    6. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    7. Riad Sultan, 2013. "The determinants of energy intensity for the design of environmental strategies in the Mauritian textile sector," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 5(2), pages 140-156.
    8. Kohl, T. & Laukkanen, T. & Tuomaala, M. & Niskanen, T. & Siitonen, S. & Järvinen, M.P. & Ahtila, P., 2014. "Comparison of energy efficiency assessment methods: Case Bio-SNG process," Energy, Elsevier, vol. 74(C), pages 88-98.
    9. Xiaoli, Zhao & Rui, Yang & Qian, Ma, 2014. "China's total factor energy efficiency of provincial industrial sectors," Energy, Elsevier, vol. 65(C), pages 52-61.
    10. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    11. Dimitrios Dadakas & Stelios D. Katranidis, 2011. "Perspectives for the textiles and clothing industry in Greece: Past experience, outlook and policy implications," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 61(1-2), pages 13-38, January -.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    2. Igliński, Bartłomiej & Iglińska, Anna & Cichosz, Marcin & Kujawski, Wojciech & Buczkowski, Roman, 2016. "Renewable energy production in the Łódzkie Voivodeship. The PEST analysis of the RES in the voivodeship and in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 737-750.
    3. Wang, Sicong & Wang, Shifeng, 2016. "Integrating spatial and biomass planning for the United States," Energy, Elsevier, vol. 114(C), pages 113-120.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    5. Rui Liu & Qiushuang Li & Yingqi Zhao, 2017. "Analysis of Existing Problems and Improvement Schemes for Substituting Electricity for Scattered Coal in China," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    6. Leonel J. R. Nunes & Liliana M. E. F. Loureiro & Letícia C. R. Sá & Hugo F. C. Silva, 2020. "Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products," Clean Technol., MDPI, vol. 2(3), pages 1-15, September.
    7. Li, Fangyi & Cao, Xin & Ou, Rui, 2021. "A network-based evolutionary analysis of the diffusion of cleaner energy substitution in enterprises: The roles of PEST factors," Energy Policy, Elsevier, vol. 156(C).
    8. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    9. Leonel J. R. Nunes & Margarida Casau & Marta Ferreira Dias, 2021. "Portuguese Wood Pellets Market: Organization, Production and Consumption Analysis," Resources, MDPI, vol. 10(12), pages 1-24, December.
    10. Chih-Chun Lai & Ching-Erh Chang, 2021. "A Study on Sustainable Design for Indigo Dyeing Color in the Visual Aspect of Clothing," Sustainability, MDPI, vol. 13(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    2. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    3. Massimo Borg & Paul Refalo & Emmanuel Francalanza, 2023. "Failure Detection Techniques on the Demand Side of Smart and Sustainable Compressed Air Systems: A Systematic Review," Energies, MDPI, vol. 16(7), pages 1-36, March.
    4. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    5. Derhami, Shahab & Smith, Alice E., 2017. "An integer programming approach for fuzzy rule-based classification systems," European Journal of Operational Research, Elsevier, vol. 256(3), pages 924-934.
    6. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    7. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    8. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    9. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    11. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    12. Tao, Liangyan & Liu, Sifeng & Xie, Naiming & Javed, Saad Ahmed, 2021. "Optimal position of supply chain delivery window with risk-averse suppliers: A CVaR optimization approach," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    14. Haseeb, Muhammad & Haouas, Ilham & Nasih, Mohammad & Mihardjo, Leonardus WW. & Jermsittiparsert, Kittisak, 2020. "Asymmetric impact of textile and clothing manufacturing on carbon-dioxide emissions: Evidence from top Asian economies," Energy, Elsevier, vol. 196(C).
    15. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    16. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    17. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    18. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    19. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    20. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:503-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.