IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp638-646.html
   My bibliography  Save this article

Using anaerobic digestion of organic wastes to biochemically store solar thermal energy

Author

Listed:
  • Zhong, Yuan
  • Bustamante Roman, Mauricio
  • Zhong, Yingkui
  • Archer, Steve
  • Chen, Rui
  • Deitz, Lauren
  • Hochhalter, Dave
  • Balaze, Katie
  • Sperry, Miranda
  • Werner, Eric
  • Kirk, Dana
  • Liao, Wei

Abstract

Solar energy is the most abundant energy resource with the potential to become a major component of a sustainable global energy solution. However, unsteady energy flow and low energy density make it difficult to collect, convert, and store solar energy, which is why current solar power generation technologies have limited applications. This paper comprehensively studied the integration of solar thermal collection with different anaerobic digestion operations to form solar-bioreactor systems in order to realize biological storage of solar energy and solve the issues that solar energy generation encounters. The experimental comparison of manure digestion and co-digestion concluded that co-digestion had a better methane yields with a minimum difference between mesophilic and thermophilic conditions. The energy analysis of solar-bioreactor systems with both manure digestion and co-digestion at different bioreactor sizes further concluded that solar-bioreactor systems with mesophilic co-digestion was the preferred system to store solar energy into methane biogas. The optimal solar-storage efficiencies for the three systems of 10, 100, 1000 m3 were 67%, 68% and 70%, respectively. The corresponding solar-bioreactor system efficiencies were 82%, 88%, and 89%.

Suggested Citation

  • Zhong, Yuan & Bustamante Roman, Mauricio & Zhong, Yingkui & Archer, Steve & Chen, Rui & Deitz, Lauren & Hochhalter, Dave & Balaze, Katie & Sperry, Miranda & Werner, Eric & Kirk, Dana & Liao, Wei, 2015. "Using anaerobic digestion of organic wastes to biochemically store solar thermal energy," Energy, Elsevier, vol. 83(C), pages 638-646.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:638-646
    DOI: 10.1016/j.energy.2015.02.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. AL-Khaffajy, Marwaan & Mossad, Ruth, 2013. "Optimization of the heat exchanger in a flat plate indirect heating integrated collector storage solar water heating system," Renewable Energy, Elsevier, vol. 57(C), pages 413-421.
    2. Cavinato, Cristina & Bolzonella, David & Pavan, Paolo & Fatone, Francesco & Cecchi, Franco, 2013. "Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors," Renewable Energy, Elsevier, vol. 55(C), pages 260-265.
    3. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    4. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    5. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yangyang & Jin, Yiying & Li, Jinhui, 2016. "Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment," Energy, Elsevier, vol. 98(C), pages 155-167.
    2. Henry Wasajja & Saqr A. A. Al-Muraisy & Antonella L. Piaggio & Pamela Ceron-Chafla & Purushothaman Vellayani Aravind & Henri Spanjers & Jules B. van Lier & Ralph E. F. Lindeboom, 2021. "Improvement of Biogas Quality and Quantity for Small-Scale Biogas-Electricity Generation Application in off-Grid Settings: A Field-Based Study," Energies, MDPI, vol. 14(11), pages 1-20, May.
    3. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
    4. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.
    5. Krause, Max J. & Detwiler, Natalie & Schwarber, Amy & McCauley, Margaret, 2022. "An evaluation of solar thermal heating to support a freeze-thaw anaerobic digestion system for human waste treatment in subarctic environments," Renewable Energy, Elsevier, vol. 198(C), pages 618-625.
    6. Li, Niansi & Gu, Tao & Xie, Hao & Ji, Jie & Liu, Xiaoyong & Yu, Bendong, 2023. "The kinetic and preliminary performance study on a novel solar photo-thermal catalytic hybrid Trombe-wall," Energy, Elsevier, vol. 269(C).
    7. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    8. Mauricio Bustamante & Abraham Engeda & Wei Liao, 2021. "Small-Scale Solar–Bio-Hybrid Power Generation Using Brayton and Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-16, January.
    9. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    3. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    4. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    5. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    6. Soares, N. & Gaspar, A.R. & Santos, P. & Costa, J.J., 2015. "Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials," Applied Energy, Elsevier, vol. 142(C), pages 192-205.
    7. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Bąk, Agnieszka & Pławecka, Kinga & Bazan, Patrycja & Łach, Michał, 2023. "Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash," Energy, Elsevier, vol. 278(C).
    10. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    11. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    12. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    13. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    14. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    15. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    17. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    18. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    19. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:638-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.