IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp379-386.html
   My bibliography  Save this article

The impact of two-stage discharging on the exergoeconomic performance of a storage-type domestic water-heater

Author

Listed:
  • Atikol, U.
  • Aldabbagh, L.B.Y.

Abstract

The present study is concerned with the exergoeconomic performance analysis of a storage-type electrical water heater, being subjected to two volumes of hot water removals at 5 L/min; the first one immediately after the heating of water in the tank, and the second, after some time has been waited since the completion of the first discharge. This two-stage discharging regime is designed and experimented in such a way to represent the two shower taking periods after the hot water preparation in the tank is accomplished. From the experimental results, correlations between exergy destruction and the standing time between the two discharging periods, for different initial volume extractions are developed. Using these correlations it is deduced that in order to minimize the cost of exergy destruction in a two stage discharging regime, the initial withdrawal of hot water volume must be maximized, while the standing period between the two discharges is minimized. For long standing periods, the economic feasibility of thicker thermal insulation must be assessed.

Suggested Citation

  • Atikol, U. & Aldabbagh, L.B.Y., 2015. "The impact of two-stage discharging on the exergoeconomic performance of a storage-type domestic water-heater," Energy, Elsevier, vol. 83(C), pages 379-386.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:379-386
    DOI: 10.1016/j.energy.2015.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hegazy, Adel A. & Diab, M. R., 2002. "Performance of an improved design for storage-type domestic electrical water-heaters," Applied Energy, Elsevier, vol. 71(4), pages 287-306, April.
    2. Ismail, Kamal A.R. & Leal, Janaína F.B. & Zanardi, Maurício A., 1997. "Models of liquid storage tanks," Energy, Elsevier, vol. 22(8), pages 805-815.
    3. Hegazy, Adel A., 2007. "Effect of inlet design on the performance of storage-type domestic electrical water heaters," Applied Energy, Elsevier, vol. 84(12), pages 1338-1355, December.
    4. Zurigat, Y. H. & Ghajar, A. J. & Moretti, P. M., 1988. "Stratified thermal storage tank inlet mixing characterization," Applied Energy, Elsevier, vol. 30(2), pages 99-111.
    5. Atikol, Uğur, 2013. "A simple peak shifting DSM (demand-side management) strategy for residential water heaters," Energy, Elsevier, vol. 62(C), pages 435-440.
    6. Kandari, Abdullah M., 1990. "Thermal stratification in hot storage-tanks," Applied Energy, Elsevier, vol. 35(4), pages 299-315.
    7. Sezai, I. & Aldabbagh, L.B.Y. & Atikol, U. & Hacisevki, H., 2005. "Performance improvement by using dual heaters in a storage-type domestic electric water-heater," Applied Energy, Elsevier, vol. 81(3), pages 291-305, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sezai, I. & Aldabbagh, L.B.Y. & Atikol, U. & Hacisevki, H., 2005. "Performance improvement by using dual heaters in a storage-type domestic electric water-heater," Applied Energy, Elsevier, vol. 81(3), pages 291-305, July.
    2. Hegazy, Adel A., 2007. "Effect of inlet design on the performance of storage-type domestic electrical water heaters," Applied Energy, Elsevier, vol. 84(12), pages 1338-1355, December.
    3. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    4. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    5. Fernández-Seara, José & Uhía, Francisco J. & Pardiñas, Ángel Á. & Bastos, Santiago, 2013. "Experimental analysis of an on demand external domestic hot water production system using four control strategies," Applied Energy, Elsevier, vol. 103(C), pages 85-96.
    6. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    7. Mawire, Ashmore, 2013. "Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging," Applied Energy, Elsevier, vol. 108(C), pages 459-465.
    8. Ievers, Simon & Lin, Wenxian, 2009. "Numerical simulation of three-dimensional flow dynamics in a hot water storage tank," Applied Energy, Elsevier, vol. 86(12), pages 2604-2614, December.
    9. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    10. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    11. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    12. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    13. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    14. Yi-Mei Liu & Kung-Ming Chung & Keh-Chin Chang & Tsong-Sheng Lee, 2012. "Performance of Thermosyphon Solar Water Heaters in Series," Energies, MDPI, vol. 5(9), pages 1-13, August.
    15. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    16. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    17. Lihua Cao & Jingwen Yu & Xifeng Liu & Zhanzhou Wang, 2024. "Evaluation Method and Analysis on Performance of Diffuser in Heat Storage Tank," Energies, MDPI, vol. 17(3), pages 1-15, January.
    18. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    19. Arif Yurtsev & Glenn P. Jenkins, 2019. "Assessment of the Impact on Household Welfare of Pressurized Potable Water Supply in Northern Cyprus," Development Discussion Papers 2019-03, JDI Executive Programs.
    20. Linas Gelažanskas & Kelum A. A. Gamage, 2016. "Distributed Energy Storage Using Residential Hot Water Heaters," Energies, MDPI, vol. 9(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:379-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.