IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp629-639.html
   My bibliography  Save this article

An experimental study on vortex-generator insert with different arrangements of delta-winglets

Author

Listed:
  • Khoshvaght-Aliabadi, M.
  • Sartipzadeh, O.
  • Alizadeh, A.

Abstract

Heat transfer enhancement in a tube using the VG (vortex-generator) insert with different arrangements of the delta-winglets is investigated. Fourteen VG inserts with the longitudinal and forward arrangement of the delta-winglets are made from the aluminum sheets with a length of 350 mm, a width of 14.5 mm, and a thickness of 0.6 mm. The heat transfer and pressure drop results achieved from the use of the VG inserts inside the tube are compared with those obtained for the plain tube. It is found that at the transitional flow through the plain tube, Notter-Rouse equation predicts the current experimental Nusselt number better than Gnielinski equation. Also, the experimental results reveal that the use of the VG inserts inside the tube yields higher heat transfer coefficient and pressure drop than the plain tube, and these parameters augment with increasing the delta-winglets. The appropriate tradeoff between the enhanced heat transfer and the friction is found by using a special arrangement of the delta-winglets on the VG insert which presents the highest heat transfer coefficient as well as the maximum values of considered PEC (performance evaluation criterion). The maximum PEC of 1.41 is found for this VG insert at Re = 8715.

Suggested Citation

  • Khoshvaght-Aliabadi, M. & Sartipzadeh, O. & Alizadeh, A., 2015. "An experimental study on vortex-generator insert with different arrangements of delta-winglets," Energy, Elsevier, vol. 82(C), pages 629-639.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:629-639
    DOI: 10.1016/j.energy.2015.01.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lotfi, Babak & Zeng, Min & Sundén, Bengt & Wang, Qiuwang, 2014. "3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators," Energy, Elsevier, vol. 73(C), pages 233-257.
    2. Kotcioglu, Isak & Caliskan, Sinan & Cansiz, Ahmet & Baskaya, Senol, 2010. "Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator," Energy, Elsevier, vol. 35(9), pages 3686-3695.
    3. Ahmed, H.E. & Mohammed, H.A. & Yusoff, M.Z., 2012. "An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5951-5993.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Zhenfei & Jiang, Ping & Zheng, Siyao & Zhang, Qingyuan & Chen, Zhen & Guo, Fangwen & Zhang, Jinxin, 2023. "Experimental and numerical investigations on the effects of insertion-type longitudinal vortex generators on flow and heat transfer characteristics in square minichannels," Energy, Elsevier, vol. 278(PA).
    2. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    3. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    4. Younus Hamoudi Assaf & Abdulrazzak Akroot & Hasanain A. Abdul Wahhab & Wadah Talal & Mothana Bdaiwi & Mohammed Y. Nawaf, 2023. "Impact of Nano Additives in Heat Exchangers with Twisted Tapes and Rings to Increase Efficiency: A Review," Sustainability, MDPI, vol. 15(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    2. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Łopata, Stanisław & Ocłoń, Paweł, 2015. "Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger," Energy, Elsevier, vol. 92(P1), pages 100-116.
    4. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    5. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    6. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    7. Xinchen Na & Yingxue Yao & Jianjun Du, 2023. "Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers," Energies, MDPI, vol. 16(13), pages 1-21, June.
    8. Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).
    9. Ali Rehman & Zabidin Salleh, 2021. "Influence of Marangoni Convection on Magnetohydrodynamic Viscous Dissipation and Heat Transfer on Hybrid Nanofluids in a Rotating System among Two Surfaces," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    10. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    11. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    12. Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.
    13. El-Behery, Samy M. & Hussien, A.A. & Kotb, H. & El-Shafie, Mostafa, 2017. "Performance evaluation of industrial glass furnace regenerator," Energy, Elsevier, vol. 119(C), pages 1119-1130.
    14. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    15. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    16. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    17. El-Shafie, Mostafa & Kambara, Shinji & Hayakawa, Yukio & Hussien, A.A., 2021. "Integration between energy and exergy analyses to assess the performance of furnace regenerative and ammonia decomposition systems," Renewable Energy, Elsevier, vol. 175(C), pages 232-243.
    18. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    19. Feng, Zhenfei & Jiang, Ping & Zheng, Siyao & Zhang, Qingyuan & Chen, Zhen & Guo, Fangwen & Zhang, Jinxin, 2023. "Experimental and numerical investigations on the effects of insertion-type longitudinal vortex generators on flow and heat transfer characteristics in square minichannels," Energy, Elsevier, vol. 278(PA).
    20. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:629-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.