IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp43-53.html
   My bibliography  Save this article

Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique

Author

Listed:
  • Lu, Zeyu
  • Zhang, Jinrui
  • Sun, Guoxing
  • Xu, Biwan
  • Li, Zongjin
  • Gong, Chenchen

Abstract

This paper presented the experimental results of MOC (magnesium oxychloride cement) with the EP/PA (expanded perlite/paraffin) composite manufactured by extrusion technique. The objective of this study was to improve the thermal insulation and thermal storage capacity of MOC cement with satisfied mechanical properties, which was expected to be used as structural materials with self-thermal insulation and storage in buildings. The DSC (differential scanning calorimetry) results revealed that the paraffin has melting temperature and latent heat of 26.7 °C and 138.0 J/g, respectively. The EP/PA composite can be obtained by absorbing the paraffin into the porous structures of expanded perlite, which showed good thermal storage and thermal stability properties. The incorporation of EP/PA composite caused not only 80% reduction in thermal conductivity, but also 14 min peak load shifting in thermal cycling test due to the improved thermal storage capacity. In addition, the extrusion technique contributed to the higher compressive and flexural strength of MOC cement due to the denser and better fiber alignment of the mixture, varied between 17–45 MPa and 6–8 MPa, respectively. In conclusion, the MOC cement with the EP/PA composite manufactured by extrusion technique has great potential for the sustainable development of energy efficient buildings.

Suggested Citation

  • Lu, Zeyu & Zhang, Jinrui & Sun, Guoxing & Xu, Biwan & Li, Zongjin & Gong, Chenchen, 2015. "Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique," Energy, Elsevier, vol. 82(C), pages 43-53.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:43-53
    DOI: 10.1016/j.energy.2014.12.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214014157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    2. Xu, Biwan & Li, Zongjin, 2014. "Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material," Applied Energy, Elsevier, vol. 121(C), pages 114-122.
    3. Li, Min & Kao, Hongtao & Wu, Zhishen & Tan, Jinmiao, 2011. "Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials," Applied Energy, Elsevier, vol. 88(5), pages 1606-1612, May.
    4. He, Bo & Martin, Viktoria & Setterwall, Fredrik, 2004. "Phase transition temperature ranges and storage density of paraffin wax phase change materials," Energy, Elsevier, vol. 29(11), pages 1785-1804.
    5. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    6. Huang, Li & Petermann, Marcus & Doetsch, Christian, 2009. "Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications," Energy, Elsevier, vol. 34(9), pages 1145-1155.
    7. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    8. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousefi, Ali & Tang, Waiching & Khavarian, Mehrnoush & Fang, Cheng, 2021. "Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite," Renewable Energy, Elsevier, vol. 175(C), pages 14-28.
    2. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    3. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    4. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    5. Sun, Jingmeng & Zhao, Junqi & Zhang, Weiye & Xu, Jianuo & Wang, Beibei & Wang, Xuanye & Zhou, Jun & Guo, Hongwu & Liu, Yi, 2023. "Composites with a Novel Core–shell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation," Applied Energy, Elsevier, vol. 330(PA).
    6. Lv, Peizhao & Ding, Mingyue & Liu, Chenzhen & Rao, Zhonghao, 2019. "Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage," Renewable Energy, Elsevier, vol. 131(C), pages 911-922.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    2. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2017. "Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 707-726.
    3. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.
    4. Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
    5. Biesuz, Mattia & Valentini, Francesco & Bortolotti, Mauro & Zambotti, Andrea & Cestari, Francesca & Bruni, Angela & Sglavo, Vincenzo M. & Sorarù, Gian D. & Dorigato, Andrea & Pegoretti, Alessandro, 2021. "Biogenic architectures for green, cheap, and efficient thermal energy storage and management," Renewable Energy, Elsevier, vol. 178(C), pages 96-107.
    6. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    7. Ramakrishnan, Sayanthan & Sanjayan, Jay & Wang, Xiaoming & Alam, Morshed & Wilson, John, 2015. "A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites," Applied Energy, Elsevier, vol. 157(C), pages 85-94.
    8. Sun, Haoyang & Li, Tao & Sha, Lyu & Chen, Fengfan & Li, Maoning & Yang, Ye & Li, Bin & Li, Dandan & Sun, Dazhi, 2023. "Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    9. Lv, Peizhao & Liu, Chenzhen & Rao, Zhonghao, 2016. "Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials," Applied Energy, Elsevier, vol. 182(C), pages 475-487.
    10. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    11. Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & Ma, Huan & Chen, Jian, 2020. "Enhanced properties of diatomite-based composite phase change materials for thermal energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 265-274.
    12. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    13. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    14. Zhu, Yejun & Huang, Baoling & Wu, Jingshen, 2014. "Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis," Applied Energy, Elsevier, vol. 132(C), pages 543-550.
    15. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    16. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
    17. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    18. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    19. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    20. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:43-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.