IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3113-3119.html
   My bibliography  Save this article

Investigation of potential of improvement of helical coils based on avoidable and unavoidable exergy destruction concepts

Author

Listed:
  • Bahiraei, Farid
  • Saray, Rahim Khoshbakhti
  • Salehzadeh, Aidin

Abstract

An inevitable problem challenges heat exchanger designers is that the heat transfer augmentation in a thermal system is always achieved at the expense of an increase in pressure loss. Thus, the trade-off by choosing the most proper configuration and best flow condition has become the critical problem for design work. The brief survey on literature shows that optimal Reynolds number of laminar forced convection in a helical tube, was specified based on minimum entropy generation. Therefore, the present study analyzes the thermodynamic potential of improvement for steady, laminar, fully developed, forced convection in a helical coiled tube subjected to uniform wall temperature based on the concept of avoidable and unavoidable exergy destruction. The influence of various parameters such as coil curvature ratio, dimensionless inlet temperature difference, dimensionless passage length of the coil, and fluid properties on avoidable exergy destruction have been investigated for water as working fluid. Results show considerable potential of thermodynamic optimization of helical coil tubes. In addition, a relation for determining the amount of optimum Dean Number is proposed for the range considered in the present study.

Suggested Citation

  • Bahiraei, Farid & Saray, Rahim Khoshbakhti & Salehzadeh, Aidin, 2011. "Investigation of potential of improvement of helical coils based on avoidable and unavoidable exergy destruction concepts," Energy, Elsevier, vol. 36(5), pages 3113-3119.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3113-3119
    DOI: 10.1016/j.energy.2011.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ko, T.H. & Ting, K., 2006. "Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube," Energy, Elsevier, vol. 31(12), pages 2142-2152.
    2. Naphon, Paisarn & Wongwises, Somchai, 2006. "A review of flow and heat transfer characteristics in curved tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 463-490, October.
    3. Satapathy, Ashok K., 2009. "Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition," Energy, Elsevier, vol. 34(9), pages 1122-1126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahadi, Mohammad & Abbassi, Abbas, 2015. "Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties," Energy, Elsevier, vol. 82(C), pages 322-332.
    2. Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
    3. Huminic, Gabriela & Huminic, Angel, 2016. "Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1327-1347.
    4. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    5. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    6. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    7. Khoshvaght-Aliabadi, M. & Tavasoli, M. & Hormozi, F., 2015. "Comparative analysis on thermal–hydraulic performance of curved tubes: Different geometrical parameters and working fluids," Energy, Elsevier, vol. 91(C), pages 588-600.
    8. Sun, Jinxiang & Zhang, Ruibo & Wang, Mingjun & Zhang, Jing & Qiu, Suizheng & Tian, Wenxi & Su, G.H., 2022. "Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method," Energy, Elsevier, vol. 259(C).
    9. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    2. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    3. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    4. Han, Yong & Wang, Xue-sheng & Zhang, Zhao & Zhang, Hao-nan, 2020. "Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory," Energy, Elsevier, vol. 192(C).
    5. Khoshvaght-Aliabadi, M. & Tavasoli, M. & Hormozi, F., 2015. "Comparative analysis on thermal–hydraulic performance of curved tubes: Different geometrical parameters and working fluids," Energy, Elsevier, vol. 91(C), pages 588-600.
    6. Ahadi, Mohammad & Abbassi, Abbas, 2015. "Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties," Energy, Elsevier, vol. 82(C), pages 322-332.
    7. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    8. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    9. Jarungthammachote, Sompop, 2010. "Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux," Energy, Elsevier, vol. 35(12), pages 5374-5379.
    10. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    11. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    12. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    13. Huminic, Gabriela & Huminic, Angel, 2016. "Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1327-1347.
    14. Haiyan Qiang & Wanli Li & Junqi Xu & Yanran Wang, 2019. "Experimental test and numerical analysis for curvature ratios effect on the heat transfer and flow characteristics of a multi-layer winding hose," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    15. Şöhret, Yasin & Dinç, Ali & Karakoç, T. Hikmet, 2015. "Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission," Energy, Elsevier, vol. 93(P1), pages 716-729.
    16. Miftah Altwieb & Rakesh Mishra & Aliyu M. Aliyu & Krzysztof J. Kubiak, 2022. "Heat Transfer Enhancement by Perforated and Louvred Fin Heat Exchangers," Energies, MDPI, vol. 15(2), pages 1-16, January.
    17. Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
    18. Guo, Jiangfeng & Xu, Mingtian & Cai, Jun & Huai, Xiulan, 2011. "Viscous dissipation effect on entropy generation in curved square microchannels," Energy, Elsevier, vol. 36(8), pages 5416-5423.
    19. Kotcioglu, Isak & Caliskan, Sinan & Cansiz, Ahmet & Baskaya, Senol, 2010. "Second law analysis and heat transfer in a cross-flow heat exchanger with a new winglet-type vortex generator," Energy, Elsevier, vol. 35(9), pages 3686-3695.
    20. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Development of Methodological Bases of the Processes of Steam Formation in Coil Type Boilers Using Solar Concentrators," Energies, MDPI, vol. 14(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3113-3119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.