IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp437-451.html
   My bibliography  Save this article

Local exergy cost analysis of microwave heating systems

Author

Listed:
  • Acevedo, Luis
  • Usón, Sergio
  • Uche, Javier

Abstract

The purpose of this work is to collect and interrelate the fundamental concepts about exergy transfer analysis and local exergy cost applied to the analysis of microwave heating systems. First, thermoeconomics and exergoeconomics are reviewed. Local exergy analysis is presented next, including local efficiency, and local cost associated. Emphasis is put on local cost that an electromagnetic field can generate and its association with microwave heating exergy. Unsteady-state of exergy cost transfer and exergy costing are difficult to perform during microwave heating due to the complex combination of electromagnetic fields and heat transfer analysis, while the electromagnetic field distribution occurs at a time scale of nanoseconds, heat and exergy cost transfer occurs at time scale of seconds. For this reason, simulations reported to date deal only with cases of First and Second Law of Thermodynamics with no mention of local efficiency or local cost, leaving an open promising field of research. By and large, results are presented for two heating methods, conventional and microwave.

Suggested Citation

  • Acevedo, Luis & Usón, Sergio & Uche, Javier, 2015. "Local exergy cost analysis of microwave heating systems," Energy, Elsevier, vol. 80(C), pages 437-451.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:437-451
    DOI: 10.1016/j.energy.2014.11.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Ye & Zhang, Weijiang & Liu, Shiqing, 2009. "Feasibility study on power ultrasound for regeneration of silica gel--A potential desiccant used in air-conditioning system," Applied Energy, Elsevier, vol. 86(11), pages 2394-2400, November.
    2. Lior, Noam & Sarmiento-Darkin, Wladimir & Al-Sharqawi, Hassan S., 2006. "The exergy fields in transport processes: Their calculation and use," Energy, Elsevier, vol. 31(5), pages 553-578.
    3. Acevedo, Luis & Usón, Sergio & Uche, Javier, 2014. "Exergy transfer analysis of microwave heating systems," Energy, Elsevier, vol. 68(C), pages 349-363.
    4. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    5. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    6. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenlong & Zhao, Chao & Sun, Jing & Wang, Xiaolin & Zhao, Xiqiang & Mao, Yanpeng & Li, Xinning & Song, Zhanlong, 2015. "Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process," Energy, Elsevier, vol. 87(C), pages 678-685.
    2. Jafari, Hassan & Kalantari, Davood & Azadbakht, Mohsen, 2017. "Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it's qualitative study," Energy, Elsevier, vol. 138(C), pages 1016-1029.
    3. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    4. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    2. Huang, Xing & Hong, Jiarong & Zhang, Yaning & Shuai, Yong & Yuan, Yuan & Li, Bingxi & Tan, Heping, 2017. "Exergy distribution characteristics of solar-thermal dissociation of NiFe2O4 in a solar reactor," Energy, Elsevier, vol. 123(C), pages 131-138.
    3. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    4. Rocco, Matteo V. & Di Lucchio, Alberto & Colombo, Emanuela, 2017. "Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach," Applied Energy, Elsevier, vol. 194(C), pages 832-844.
    5. Acevedo, Luis & Usón, Sergio & Uche, Javier, 2014. "Exergy transfer analysis of microwave heating systems," Energy, Elsevier, vol. 68(C), pages 349-363.
    6. Agudelo, Andrés & Cortés, Cristóbal, 2010. "Thermal radiation and the second law," Energy, Elsevier, vol. 35(2), pages 679-691.
    7. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    8. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    9. Gad, M.S. & Uysal, Cuneyt & El-Shafay, A.S. & Ağbulut, Ümit, 2024. "Exergetic and exergoeconomic assessments of a diesel engine fuelled with waste chicken fat biodiesel-diesel blends," Energy, Elsevier, vol. 293(C).
    10. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    11. Kwak, H.-Y. & Kim, D.-J. & Jeon, J.-S., 2003. "Exergetic and thermoeconomic analyses of power plants," Energy, Elsevier, vol. 28(4), pages 343-360.
    12. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    13. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    14. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    15. Abbassi, H., 2007. "Entropy generation analysis in a uniformly heated microchannel heat sink," Energy, Elsevier, vol. 32(10), pages 1932-1947.
    16. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    17. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    18. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    19. Silva, J.A.M. & Flórez-Orrego, D. & Oliveira, S., 2014. "An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels," Energy, Elsevier, vol. 67(C), pages 490-495.
    20. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:437-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.