IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp164-173.html
   My bibliography  Save this article

Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures

Author

Listed:
  • Fan, Tie-gang
  • Zhang, Guang-qing

Abstract

Researchers have recently realized that hydraulic fracture networks are significant for the exploitation of unconventional reservoirs (tight gas, shale gas, coalbed methane, etc.). Studies have shown that slickwater fracturing treatments can create complex fractures that increase the ‘stimulated reservoir volume’ in naturally fractured formations. However, the influence of the created hydraulic fracture network is not well understood. Laboratory experiments are proposed to study the evolution of hydraulic fracture networks in naturally fractured formations with specimens that contain two groups of orthogonal cemented fractures. The influence of dominating factors was studied and analyzed, with an emphasis on natural fracture density and injection rate. We concluded that hydraulic fracture networks are formed by the interactive process between the reopening and connecting of the natural fractures through slickwater fracturing in the specimens, indicated by frequent pressure fluctuations. The spatial envelope of the fracture network is an approximate ellipsoid with the major axis deviating from the orientation of the maximum horizontal stress. It is suggested from the pressure curve that great natural fracture density and high injection rates tend to raise the treatment pressure and the pressure profiles could reflect different characteristics of extending behaviors.

Suggested Citation

  • Fan, Tie-gang & Zhang, Guang-qing, 2014. "Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures," Energy, Elsevier, vol. 74(C), pages 164-173.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:164-173
    DOI: 10.1016/j.energy.2014.05.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
    2. Gracceva, Francesco & Zeniewski, Peter, 2013. "Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model)," Energy, Elsevier, vol. 57(C), pages 443-457.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    2. Yu Wang & Xiao Li & Jianming He & Zhiheng Zhao & Bo Zheng, 2016. "Investigation of Fracturing Network Propagation in Random Naturally Fractured and Laminated Block Experiments," Energies, MDPI, vol. 9(8), pages 1-15, July.
    3. Jianming He & Lekan Olatayo Afolagboye & Chong Lin & Xiaole Wan, 2018. "An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO 2," Energies, MDPI, vol. 11(3), pages 1-13, March.
    4. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    5. Jihuan Wu & Xuguang Li & Yu Wang, 2023. "Insight into the Effect of Natural Fracture Density in a Shale Reservoir on Hydraulic Fracture Propagation: Physical Model Testing," Energies, MDPI, vol. 16(2), pages 1-17, January.
    6. Jianxiong Li & Shiming Dong & Wen Hua & Yang Yang & Xiaolong Li, 2019. "Numerical Simulation on Deflecting Hydraulic Fracture with Refracturing Using Extended Finite Element Method," Energies, MDPI, vol. 12(11), pages 1-19, May.
    7. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    8. Josifovic, Aleksandar & Roberts, Jennifer J. & Corney, Jonathan & Davies, Bruce & Shipton, Zoe K., 2016. "Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps," Energy, Elsevier, vol. 115(P1), pages 1216-1233.
    9. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.
    10. Zhaohui Chong & Qiangling Yao & Xuehua Li, 2019. "Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores," Energies, MDPI, vol. 12(6), pages 1-16, March.
    11. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    12. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    13. Jianming He & Chong Lin & Xiao Li & Xiaole Wan, 2016. "Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores," Energies, MDPI, vol. 9(12), pages 1-16, December.
    14. Zhihong Lei & Yanjun Zhang & Zhongjun Hu & Liangzhen Li & Senqi Zhang & Lei Fu & Gaofan Yue, 2019. "Application of Water Fracturing in Geothermal Energy Mining: Insights from Experimental Investigations," Energies, MDPI, vol. 12(11), pages 1-22, June.
    15. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    2. Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.
    3. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    4. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    5. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    6. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    7. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    8. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    9. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    10. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    11. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    12. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    13. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Gracceva, Francesco & Zeniewski, Peter, 2013. "Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model)," Energy, Elsevier, vol. 57(C), pages 443-457.
    15. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Methods of estimating shale gas resources – Comparison, evaluation and implications," Energy, Elsevier, vol. 59(C), pages 116-125.
    16. Mondal, Md Alam Hossain & Rosegrant, Mark & Ringler, Claudia & Pradesha, Angga & Valmonte-Santos, Rowena, 2018. "The Philippines energy future and low-carbon development strategies," Energy, Elsevier, vol. 147(C), pages 142-154.
    17. Zhang, Decheng & Ranjith, P.G. & Perera, M.S.A. & Zhang, C.P., 2020. "Influences of test method and loading history on permeability of tight reservoir rocks," Energy, Elsevier, vol. 195(C).
    18. Zeng, Fang & Dong, Chunmei & Lin, Chengyan & Tian, Shansi & Wu, Yuqi & Lin, Jianli & Liu, Binbin & Zhang, Xianguo, 2022. "Pore structure characteristics of reservoirs of Xihu Sag in East China Sea Shelf Basin based on dual resolution X-ray computed tomography and their influence on permeability," Energy, Elsevier, vol. 239(PD).
    19. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2016. "The impact of the North American shale gas revolution on regional natural gas markets: Evidence from the regime-switching model," Energy Policy, Elsevier, vol. 96(C), pages 167-178.
    20. Scott, Michael J. & Daly, Don S. & Hathaway, John E. & Lansing, Carina S. & Liu, Ying & McJeon, Haewon C. & Moss, Richard H. & Patel, Pralit L. & Peterson, Marty J. & Rice, Jennie S. & Zhou, Yuyu, 2015. "Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model," Energy, Elsevier, vol. 90(P2), pages 1682-1694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:164-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.