IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p976-d213544.html
   My bibliography  Save this article

Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores

Author

Listed:
  • Zhaohui Chong

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
    Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong 2522, Australia)

  • Qiangling Yao

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, China)

  • Xuehua Li

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Hydraulic fracturing is a key technology for the development of unconventional resources such as shale gas. Due to the existence of numerous bedding planes, shale reservoirs can be considered typical anisotropic materials. In anisotropic shale reservoirs, the complex hydraulic fracture network (HFN) formed by the interaction of hydraulic fracture (HF) and bedding plane (BP) is the key to fracturing treatment. In this paper, considering the anisotropic angle, stress state and injection rate, a series of hydraulic fracturing experiments were conducted to investigate the effect of anisotropic characteristics of shale reservoirs on HFN formation. The results showed that the breakdown pressure increased first and then decreased when the anisotropic angle changed at 0°–90°, while the circumferential displacement had the opposite trend with a small difference. When θ = 0°, fracturing efficiency of shale specimens was much higher than that under other operating conditions. When θ ≤ 15°, the bedding-plane mode is ubiquitous in all shale reservoirs. While θ ranged from 30°–45°, a comprehensive propagation pattern of bedding-plane and crossing is presented. When θ ≥ 60°, the HFN pattern changes from comprehensive mode to crossing mode. The propagation pattern obtained from physical experiments were verified by theoretical analysis. The closure proportion of the circumferential displacement was the highest when the propagation pattern was the bedding-plane mode ( θ ≤ 15°), following by crossing. The closure proportion was minimum only when the bedding-plane and crossing mode were simultaneously presented in the HFN. The results can provide some basic data for the design in hydraulic fracturing of tight oil/gas reservoirs.

Suggested Citation

  • Zhaohui Chong & Qiangling Yao & Xuehua Li, 2019. "Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores," Energies, MDPI, vol. 12(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:976-:d:213544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rongkun Pan & Yuanping Cheng & Liang Yuan & Minggao Yu & Jun Dong, 2014. "Effect of bedding structural diversity of coal on permeability evolution and gas disasters control with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 531-546, September.
    2. Taniguchi, Takashi & Mitsumata, Tetsu & Sugimoto, Masataka & Koyama, Kiyohito, 2006. "Anisotropy in elastic modulus of hydrogel containing magnetic particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 240-244.
    3. Fan, Tie-gang & Zhang, Guang-qing, 2014. "Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures," Energy, Elsevier, vol. 74(C), pages 164-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.
    2. Guo, Yong & Yang, Fuqiang, 2023. "Mining safety research in China: Understanding safety research trends and future demands for sustainable mining industry," Resources Policy, Elsevier, vol. 83(C).
    3. Jilin Wang & Ming Li & Shaochun Xu & Zhenghui Qu & Bo Jiang, 2018. "Simulation of Ground Stress Field and Advanced Prediction of Gas Outburst Risks in the Non-Mining Area of Xinjing Mine, China," Energies, MDPI, vol. 11(5), pages 1-16, May.
    4. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    5. Yu Wang & Xiao Li & Jianming He & Zhiheng Zhao & Bo Zheng, 2016. "Investigation of Fracturing Network Propagation in Random Naturally Fractured and Laminated Block Experiments," Energies, MDPI, vol. 9(8), pages 1-15, July.
    6. Yi Xue & Feng Gao & Xingguang Liu, 2015. "Effect of damage evolution of coal on permeability variation and analysis of gas outburst hazard with coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 999-1013, November.
    7. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    8. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    9. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    10. Jihuan Wu & Xuguang Li & Yu Wang, 2023. "Insight into the Effect of Natural Fracture Density in a Shale Reservoir on Hydraulic Fracture Propagation: Physical Model Testing," Energies, MDPI, vol. 16(2), pages 1-17, January.
    11. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    12. Zhao, Liqiang & Chen, Yixin & Du, Juan & Liu, Pingli & Li, Nianyin & Luo, Zhifeng & Zhang, Chencheng & Huang, Fushan, 2019. "Experimental Study on a new type of self-propping fracturing technology," Energy, Elsevier, vol. 183(C), pages 249-261.
    13. Josifovic, Aleksandar & Roberts, Jennifer J. & Corney, Jonathan & Davies, Bruce & Shipton, Zoe K., 2016. "Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps," Energy, Elsevier, vol. 115(P1), pages 1216-1233.
    14. Jianxiong Li & Shiming Dong & Wen Hua & Yang Yang & Xiaolong Li, 2019. "Numerical Simulation on Deflecting Hydraulic Fracture with Refracturing Using Extended Finite Element Method," Energies, MDPI, vol. 12(11), pages 1-19, May.
    15. Jianming He & Chong Lin & Xiao Li & Xiaole Wan, 2016. "Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores," Energies, MDPI, vol. 9(12), pages 1-16, December.
    16. Zhihong Lei & Yanjun Zhang & Zhongjun Hu & Liangzhen Li & Senqi Zhang & Lei Fu & Gaofan Yue, 2019. "Application of Water Fracturing in Geothermal Energy Mining: Insights from Experimental Investigations," Energies, MDPI, vol. 12(11), pages 1-22, June.
    17. Rongkun Pan & Zejun Xiao & Minggao Yu, 2017. "The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications," Energies, MDPI, vol. 10(10), pages 1-14, October.
    18. Jianming He & Lekan Olatayo Afolagboye & Chong Lin & Xiaole Wan, 2018. "An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO 2," Energies, MDPI, vol. 11(3), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:976-:d:213544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.