IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp69-79.html
   My bibliography  Save this article

Thermodynamic study of multi-effect thermal vapour-compression desalination systems

Author

Listed:
  • Samaké, Oumar
  • Galanis, Nicolas
  • Sorin, Mikhail

Abstract

The parametric analysis of a multi-effect-evaporation (MEE) desalination system combined with a thermal-vapour-compression (TVC) process activated by a gaseous stream of specified flowrate and temperature was performed based on the principles of classical (1st and 2nd laws) and finite-size thermodynamics. The MEE subsystem was treated as a black box and therefore the results are valid for any combination of physical characteristics and internal operational conditions of this subsystem. They show the effects of four design variables (the motive fluid pressure and the compression ratio of the ejector, the condenser temperature pinch and the ratio of rejected to supplied seawater) on significant operating quantities and performance indicators such as: energy supplied by the heat source; motive fluid flowrate; flowrates of the supplied seawater and produced potable water; specific heat consumption; thermal conductance of the vapour generator and the condenser; exergy destruction by the MEE, the ejector and the vapour generator. Based on the obtained results recommendations are formulated for the optimal choice of values for the four design variables.

Suggested Citation

  • Samaké, Oumar & Galanis, Nicolas & Sorin, Mikhail, 2014. "Thermodynamic study of multi-effect thermal vapour-compression desalination systems," Energy, Elsevier, vol. 72(C), pages 69-79.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:69-79
    DOI: 10.1016/j.energy.2014.04.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214005052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
    2. Gadhamshetty, Venkataramana & Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany, 2014. "Thermal energy storage system for energy conservation and water desalination in power plants," Energy, Elsevier, vol. 66(C), pages 938-949.
    3. Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
    4. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    5. Antipova, Ekaterina & Boer, Dieter & Cabeza, Luisa F. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2013. "Uncovering relationships between environmental metrics in the multi-objective optimization of energy systems: A case study of a thermal solar Rankine reverse osmosis desalination plant," Energy, Elsevier, vol. 51(C), pages 50-60.
    6. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    7. Kim, Kyoung Hoon & Ko, Hyung Jong & Kim, Kyoungjin, 2014. "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles," Applied Energy, Elsevier, vol. 113(C), pages 970-981.
    8. Hajabdollahi, Zahra & Hajabdollahi, Farzaneh & Tehrani, Mahdi & Hajabdollahi, Hassan, 2013. "Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery," Energy, Elsevier, vol. 63(C), pages 142-151.
    9. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    10. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
    11. El-Emam, Rami Salah & Dincer, Ibrahim, 2014. "Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery," Energy, Elsevier, vol. 64(C), pages 154-163.
    12. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Integration of thermo-vapor compressor with multiple-effect evaporator," Applied Energy, Elsevier, vol. 184(C), pages 560-573.
    2. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    3. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
    5. Samaké, Oumar & Galanis, Nicolas & Sorin, Mikhail, 2018. "Thermo-economic analysis of a multiple-effect desalination system with ejector vapour compression," Energy, Elsevier, vol. 144(C), pages 1037-1051.
    6. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    7. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    8. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Wang, Yang & Shaheed, Mohammad Hasan, 2015. "Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis)," Energy, Elsevier, vol. 86(C), pages 423-435.
    2. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    3. Hadi Rostamzadeh & Saeed Rostami & Majid Amidpour & Weifeng He & Dong Han, 2021. "Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?," Sustainability, MDPI, vol. 13(14), pages 1-40, July.
    4. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    5. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    6. Gonzalez, Alonso & Grágeda, Mario & Ushak, Svetlana, 2017. "Assessment of pilot-scale water purification module with electrodialysis technology and solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1643-1652.
    7. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.
    8. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    9. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    11. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    12. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    13. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    14. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    15. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    16. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    17. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    18. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    19. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    20. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:69-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.