IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp405-413.html
   My bibliography  Save this article

An important feature of air heat pump cycle: Heating capacity in line with heating load

Author

Listed:
  • Zhang, Chun-Lu
  • Yuan, Han

Abstract

In the conventional vapor-compression heat pumps, the heating capacity and the heating load usually vary in opposite directions, which results in a mismatch of the heating capacity and the heating load at off-design conditions. Air (reversed Brayton) cycle is a potential substitute for the conventional vapor-compression cycles. This paper proved that in theory the air heat pump cycle can make the heating capacity in line with the heating load at a stable level of heating COP (coefficient of performance). A thermodynamic model for the air heat pump cycle with practical compressor and expander was developed. The optimal heating COP and the corresponding pressure ratio were derived from the model. Then the cycle performance was analytically expressed under the optimal COP conditions. The heating capacity under different operating conditions was found in line with the heating load. Comparisons between the air heat pump cycle and two typical vapor-compression heat pump cycles were numerically done for further verification. It also turned out that the energy efficiency of air heat pump is comparable to the transcritical CO2 heat pump, particularly at large temperature difference.

Suggested Citation

  • Zhang, Chun-Lu & Yuan, Han, 2014. "An important feature of air heat pump cycle: Heating capacity in line with heating load," Energy, Elsevier, vol. 72(C), pages 405-413.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:405-413
    DOI: 10.1016/j.energy.2014.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaoxin & Yuan, Xiugan, 2007. "Reuse of condensed water to improve the performance of an air-cycle refrigeration system for transport applications," Applied Energy, Elsevier, vol. 84(9), pages 874-881, September.
    2. Bi, Yuehong & Chen, Lingen & Sun, Fengrui, 2008. "Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump," Applied Energy, Elsevier, vol. 85(7), pages 607-617, July.
    3. Yuehong Bi & Lingen Chen & Fengrui Sun, 2009. "Ecological, exergetic efficiency and heating load optimizations for endoreversible variable-temperature heat reservoir simple air heat pump cycles," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 5(1), pages 7-17, October.
    4. White, A.J., 2009. "Thermodynamic analysis of the reverse Joule-Brayton cycle heat pump for domestic heating," Applied Energy, Elsevier, vol. 86(11), pages 2443-2450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    2. Yang, Liang & Yuan, Han & Peng, Jing-Wei & Zhang, Chun-Lu, 2016. "Performance modeling of air cycle heat pump water heater in cold climate," Renewable Energy, Elsevier, vol. 87(P3), pages 1067-1075.
    3. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Cheng, Jianlin & Li, Shengbing, 2016. "Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying," Energy, Elsevier, vol. 96(C), pages 268-277.
    4. Zhang, Chun-Lu & Yuan, Han & Cao, Xiang, 2015. "New insight into regenerated air heat pump cycle," Energy, Elsevier, vol. 91(C), pages 226-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chun-Lu & Yuan, Han & Cao, Xiang, 2015. "New insight into regenerated air heat pump cycle," Energy, Elsevier, vol. 91(C), pages 226-234.
    2. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    3. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Saghafifar, Mohammad & Schnellmann, Matthias A. & Scott, Stuart A., 2020. "Chemical looping electricity storage," Applied Energy, Elsevier, vol. 279(C).
    5. Touré, Abdou & Stouffs, Pascal, 2014. "Modeling of the Ericsson engine," Energy, Elsevier, vol. 76(C), pages 445-452.
    6. Vecchi, Andrea & Sciacovelli, Adriano, 2023. "Long-duration thermo-mechanical energy storage – Present and future techno-economic competitiveness," Applied Energy, Elsevier, vol. 334(C).
    7. Açıkkalp, Emin, 2015. "Exergetic sustainability evaluation of irreversible Carnot refrigerator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 311-320.
    8. Jin-Seo Kim & In-Ho Chung & Tong-Seop Kim & Chan-Ho Song, 2024. "Thermal Performance Design and Analysis of Reversed Brayton Cycle Heat Pumps for High-Temperature Heat Supply," Energies, MDPI, vol. 17(12), pages 1-18, June.
    9. Sun, Haoran & Duan, Zhongdi & Wang, Xuyang & Wang, Dawei & Wu, Chengyun, 2023. "A pressure-node based dynamic model for simulation and control of aircraft air-conditioning systems," Energy, Elsevier, vol. 263(PD).
    10. McTigue, Joshua D. & White, Alexander J. & Markides, Christos N., 2015. "Parametric studies and optimisation of pumped thermal electricity storage," Applied Energy, Elsevier, vol. 137(C), pages 800-811.
    11. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:405-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.