IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v71y2014icp302-320.html
   My bibliography  Save this article

Heat integration in multipurpose batch plants using a robust scheduling framework

Author

Listed:
  • Seid, Esmael R.
  • Majozi, Thokozani

Abstract

Energy saving is becoming increasingly important in batch processing facilities. Multipurpose batch plants have become more popular than ever in the processing environment due to their inherent flexibility and adaptability to market conditions, even though the same flexibility may lead to complexities such as the need to schedule process tasks. These are important features to producing high value added products such as agrochemicals, pharmaceuticals, polymers, food and specialty chemicals where the demand has grown in recent decades. Many current heat integration methods for multipurpose batch plants use a sequential methodology where the schedule is solved first followed by heat integration. This can lead to suboptimal results. In this paper, the heat integration model is built upon a robust scheduling framework. This scheduling formulation has proven to lead to better results in terms of better objective values, fewer required time points and reduced computational time. This is important as inclusion of heat integration into a scheduling model invariably complicates the solution process. The improved scheduling model allows the consideration of industrial sized problems to simultaneously optimize both the process schedule and energy usage. Both direct and indirect heat integration are considered as well as fixed and variable batch sizes.

Suggested Citation

  • Seid, Esmael R. & Majozi, Thokozani, 2014. "Heat integration in multipurpose batch plants using a robust scheduling framework," Energy, Elsevier, vol. 71(C), pages 302-320.
  • Handle: RePEc:eee:energy:v:71:y:2014:i:c:p:302-320
    DOI: 10.1016/j.energy.2014.04.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400471X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2011. "A novel heat integrated batch distillation scheme," Applied Energy, Elsevier, vol. 88(12), pages 5221-5225.
    2. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    3. Fernández, Inmaculada & Renedo, Carlos J. & Pérez, Severiano F. & Ortiz, Alfredo & Mañana, Mario, 2012. "A review: Energy recovery in batch processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2260-2277.
    4. Tânia Pinto & Augusto Novais & Ana Barbosa-Póvoa, 2003. "Optimal Design of Heat-Integrated Multipurpose Batch Facilities with Economic Savings in Utilities: A Mixed Integer Mathematical Formulation," Annals of Operations Research, Springer, vol. 120(1), pages 201-230, April.
    5. Stamp, Jane & Majozi, Thokozani, 2011. "Optimum heat storage design for heat integrated multipurpose batch plants," Energy, Elsevier, vol. 36(8), pages 5119-5131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    2. Magege, Simbarashe R. & Majozi, Thokozani, 2021. "A comprehensive framework for synthesis and design of heat-integrated batch plants: Consideration of intermittently-available streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Inmaculada & Renedo, Carlos J. & Pérez, Severiano F. & Ortiz, Alfredo & Mañana, Mario, 2012. "A review: Energy recovery in batch processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2260-2277.
    2. Abdelouadoud, Yasmina & Lucas, Edward & Krummenacher, Pierre & Olsen, Donald & Wellig, Beat, 2019. "Batch process heat storage integration: A simple and effective graphical approach," Energy, Elsevier, vol. 185(C), pages 804-818.
    3. Mokhtar, Maizura & Burns, Stephen & Ross, Dave & Hunt, Ian, 2017. "Exploring multi-objective trade-offs in the design space of a waste heat recovery system," Applied Energy, Elsevier, vol. 195(C), pages 114-124.
    4. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    5. Er, Hong An & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2022. "Simultaneous retrofit of direct and indirect Heat Exchanger Storage Network (HESN) via individual batch process stream mapping," Energy, Elsevier, vol. 261(PA).
    6. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    7. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    8. Florian Schlosser & Ron-Hendrik Peesel & Henning Meschede & Matthias Philipp & Timothy G. Walmsley & Michael R. W. Walmsley & Martin J. Atkins, 2019. "Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation," Energies, MDPI, vol. 12(5), pages 1-17, March.
    9. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    10. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    11. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    12. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    13. Low, Elaine & Huang, Si-Min & Yang, Minlin & Show, Pau Loke & Law, Chung Lim, 2021. "Design of cascade analysis for renewable and waste heat recovery in a solar thermal regeneration unit of a liquid desiccant dehumidification system," Energy, Elsevier, vol. 235(C).
    14. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    15. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    16. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R. & Tarighaleslami, Amir H., 2015. "Thermo-economic optimisation of industrial milk spray dryer exhaust to inlet air heat recovery," Energy, Elsevier, vol. 90(P1), pages 95-104.
    17. Pedro Simão & Miguel Vieira & Telmo Pinto & Tânia Pinto-Varela, 2022. "Design and Operation of Multipurpose Production Facilities Using Solar Energy Sources for Heat Integration Sustainable Strategies," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    18. Coatalem, Martin & Mazauric, Vincent & Le Pape-Gardeux, Claude & Maïzi, Nadia, 2017. "Optimizing industries’ power generation assets on the electricity markets," Applied Energy, Elsevier, vol. 185(P2), pages 1744-1756.
    19. Guiling Wang & Degang Yang & Fuqiang Xia & Yannan Zhao, 2016. "Study on Industrial Integration Development of the Energy Chemical Industry in Urumqi-Changji-Shihezi Urban Agglomeration, Xinjiang, NW China," Sustainability, MDPI, vol. 8(7), pages 1-11, July.
    20. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:71:y:2014:i:c:p:302-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.