IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp364-369.html
   My bibliography  Save this article

Degradation of nitrile rubber fuel hose by biodiesel use

Author

Listed:
  • Coronado, Marcos
  • Montero, Gisela
  • Valdez, Benjamín
  • Stoytcheva, Margarita
  • Eliezer, Amir
  • García, Conrado
  • Campbell, Héctor
  • Pérez, Armando

Abstract

Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease.

Suggested Citation

  • Coronado, Marcos & Montero, Gisela & Valdez, Benjamín & Stoytcheva, Margarita & Eliezer, Amir & García, Conrado & Campbell, Héctor & Pérez, Armando, 2014. "Degradation of nitrile rubber fuel hose by biodiesel use," Energy, Elsevier, vol. 68(C), pages 364-369.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:364-369
    DOI: 10.1016/j.energy.2014.02.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haseeb, A.S.M.A. & Masjuki, H.H. & Siang, C.T. & Fazal, M.A., 2010. "Compatibility of elastomers in palm biodiesel," Renewable Energy, Elsevier, vol. 35(10), pages 2356-2361.
    2. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    2. Marcos A. Coronado & Gisela Montero & Conrado García & Benjamín Valdez & Ramón Ayala & Armando Pérez, 2017. "Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework," Energies, MDPI, vol. 10(5), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haseeb, A.S.M.A. & Jun, T.S. & Fazal, M.A. & Masjuki, H.H., 2011. "Degradation of physical properties of different elastomers upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(3), pages 1814-1819.
    2. Chandran, Davannendran, 2020. "Compatibility of diesel engine materials with biodiesel fuel," Renewable Energy, Elsevier, vol. 147(P1), pages 89-99.
    3. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    4. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    5. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    6. Sui, Meng & Li, Fashe, 2019. "Effect of TEPA on oxidation stability and metal ion content of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 352-358.
    7. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    8. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    9. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    10. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    11. Castro Gonzáles, Nirza Fabiola, 2016. "International experiences with the cultivation of Jatropha curcas for biodiesel production," Energy, Elsevier, vol. 112(C), pages 1245-1258.
    12. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    13. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    14. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    15. Farfan-Cabrera, Leonardo Israel & Pérez-González, José & Gallardo-Hernández, Ezequiel Alberto, 2018. "Deterioration of seals of automotive fuel systems upon exposure to straight Jatropha oil and diesel," Renewable Energy, Elsevier, vol. 127(C), pages 125-133.
    16. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    17. Singh, B. & Korstad, John & Sharma, Y.C., 2012. "A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3401-3408.
    18. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    19. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    20. Akhlaghi, Shahin & Gedde, Ulf W. & Hedenqvist, Mikael S. & Braña, Maria T. Conde & Bellander, Martin, 2015. "Deterioration of automotive rubbers in liquid biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1238-1248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:364-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.