IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp239-249.html
   My bibliography  Save this article

Mechanical behaviour of wellbore materials saturated in brine water with different salinity levels

Author

Listed:
  • Nasvi, M.C.M.
  • Ranjith, P.G.
  • Sanjayan, J.
  • Haque, A.
  • Li, Xiao

Abstract

In any carbon capture and sequestration (CCS) project, well cement plays a vital role as it provides the required zonal isolation and well integrity. Typical wellbore materials including well cement and formation rock will be exposed to a range of saturation mediums such as water and brine with different salinity levels. To date, ordinary Portland cement (OPC)-based well cement has been used. However, its survival has been questioned under CO2 sequestration conditions, as it experiences cement degradation and strength reduction in saline water. Therefore, this experimental work investigates the mechanical characteristics of geopolymer (G) as well cement and sandstone (S) as formation material. The mechanical behaviours of G, S and G–S composite materials in fresh water (W) and two concentrations of brine water (BW), 5% NaCl (5% BW) and 15% NaCl (15% BW), were studied. Based on the results, it was found that G, S and G–S samples experience strength reduction in W and BW. However, the reduction rate of G is almost half of that of OPC-based oil well cement. In addition, the strength reduction rates of G and G–S were less in 15% BW compared to W and 5% BW, due to the lower alkali leaching rates from G in BW compared to W. Therefore, saline aquifers with high NaCl content are always favourable for G well cement. The S samples showed constant strength reduction regardless of the saturation medium, and hence NaCl does not show any significant effect on the mechanical behaviour of quartz-rich sandstone. The crack propagation stress thresholds were higher for G and G–S saturated in 15% BW compared to 5% BW. The S samples did not show major variation in crack propagation stress thresholds in W and BW. The ARAMIS strain measurement results showed that the maximum strain that wellbore materials experience at failure reduces with the introduction of brine. In addition, G and G–S undergo splitting failure, whereas S experiences shear failure in W and BW.

Suggested Citation

  • Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A. & Li, Xiao, 2014. "Mechanical behaviour of wellbore materials saturated in brine water with different salinity levels," Energy, Elsevier, vol. 66(C), pages 239-249.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:239-249
    DOI: 10.1016/j.energy.2013.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    2. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    3. Mohamed M.C. Nasvi & Ranjith P. Gamage & Sanjayan Jay, 2012. "Geopolymer as well cement and the variation of its mechanical behavior with curing temperature," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(1), pages 46-58, February.
    4. Perera, M.S.A. & Ranjith, P.G. & Peter, M., 2011. "Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: Carbon dioxide, water and nitrogen saturations," Energy, Elsevier, vol. 36(12), pages 6941-6947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayal Wanniarachchi & Ranjith Pathegama Gamage & Qiao Lyu & Samintha Perera & Hiruni Wickramarathne & Tharaka Rathnaweera, 2018. "Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-21, December.
    2. Yan-Hua Huang & Sheng-Qi Yang & Matthew R. Hall & Yuan-Chao Zhang, 2018. "The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone," Energies, MDPI, vol. 11(2), pages 1-17, February.
    3. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Zhang, Yungen & Shi, Yanping & Chen, Shuya & Yue, Ye & Wei, Zhaohui & Yin, Dezhan & Li, Hua, 2022. "Modeling of nanoparticle fluid microscopic plugging effect on horizontal and vertical wellbore of shale gas," Energy, Elsevier, vol. 239(PB).
    4. Radhika Vidanage De Silva & Ranjith Pathegama Gamage & Mandadige Samintha Anne Perera, 2016. "An Alternative to Conventional Rock Fragmentation Methods Using SCDA: A Review," Energies, MDPI, vol. 9(11), pages 1-31, November.
    5. Yang, Xianyu & Cai, Jihua & Jiang, Guosheng & Xie, Jingyu & Shi, Yanping & Chen, Shuya & Yue, Ye & Yu, Lang & He, Yichao & Xie, Kunzhi, 2020. "Nanoparticle plugging prediction of shale pores: A numerical and experimental study," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perera, M.S.A. & Ranjith, P.G. & Viete, D.R., 2013. "Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin," Applied Energy, Elsevier, vol. 110(C), pages 73-81.
    2. Ranjith, P.G. & Perera, M.S.A., 2012. "Effects of cleat performance on strength reduction of coal in CO2 sequestration," Energy, Elsevier, vol. 45(1), pages 1069-1075.
    3. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    4. Zheng, Yangfeng & Zhai, Cheng & Chen, Aikun & Yu, Xu & Xu, Jizhao & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zhu, Xinyu & Li, Yujie, 2023. "Microstructure evolution of bituminite and anthracite modified by different fracturing fluids," Energy, Elsevier, vol. 263(PB).
    5. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    6. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    7. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    8. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    9. Mandadige Samintha Anne Perera, 2018. "A Comprehensive Overview of CO 2 Flow Behaviour in Deep Coal Seams," Energies, MDPI, vol. 11(4), pages 1-23, April.
    10. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    11. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    12. Ayal Wanniarachchi & Ranjith Pathegama Gamage & Qiao Lyu & Samintha Perera & Hiruni Wickramarathne & Tharaka Rathnaweera, 2018. "Mechanical Characterization of Low Permeable Siltstone under Different Reservoir Saturation Conditions: An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-21, December.
    13. Mandadige Samintha Anne Perera & Kadinappuli Hewage Suresh Madushan Sampath & Pathegama Gamage Ranjith & Tharaka Dilanka Rathnaweera, 2018. "Effects of Pore Fluid Chemistry and Saturation Degree on the Fracability of Australian Warwick Siltstone," Energies, MDPI, vol. 11(10), pages 1-15, October.
    14. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    15. Nicholas Charles Collier & Neil Brennan Milestone & Karl Patrick Travis, 2019. "A Review of Potential Cementing Systems for Sealing and Support Matrices in Deep Borehole Disposal of Radioactive Waste," Energies, MDPI, vol. 12(12), pages 1-15, June.
    16. Yiyu Lu & Yugang Cheng & Zhaolong Ge & Liang Cheng & Shaojie Zuo & Jianyu Zhong, 2016. "Determination of Fracture Initiation Locations during Cross-Measure Drilling for Hydraulic Fracturing of Coal Seams," Energies, MDPI, vol. 9(5), pages 1-13, May.
    17. Xiaogang Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anne Perera & Ashani Savinda Ranathunga, 2018. "Effects of Water and Brine Saturation on Mechanical Property Alterations of Brown Coal," Energies, MDPI, vol. 11(5), pages 1-17, May.
    18. Zhou, Yinbo & Zhang, Ruilin & Huang, Jilei & Li, Zenghua & Chen, Zhao & Zhao, Zhou & Hong, Yidu, 2020. "Influence of alkaline solution injection for wettability and permeability of coal with CO2 injection," Energy, Elsevier, vol. 202(C).
    19. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.
    20. Qiao Lyu & Xinping Long & Pathegama Gamage Ranjith & Yong Kang, 2016. "Unconventional Gas: Experimental Study of the Influence of Subcritical Carbon Dioxide on the Mechanical Properties of Black Shale," Energies, MDPI, vol. 9(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:239-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.