IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp273-277.html
   My bibliography  Save this article

Assessment of boundary lubrication in biodiesels by nanotribological tests

Author

Listed:
  • Maru, Marcia M.
  • Almeida, Clara M.
  • Silva, Rui F.
  • Achete, Carlos A.

Abstract

Nanoscale measurements using atomic force microscopy are performed in order to scrutinize the friction phenomena observed in microscale ball-on-disc tribological tests under (boundary lubrication) BL regime. Two reference biodiesels, one derived from a vegetable source (soybean) and the other from animal fat, are compared. A linear dependence of the friction coefficient (μ) with the Stribeck parameter (S = viscosity × velocity/load) is observed: μ = 0.11 − 26.54 × S for the animal fat and μ = 0.12 − 51.56 × S for the soybean biodiesel. The nanotribological tests allowed highlighting the cohesion component of friction force in the BL regime that is associated to the intrinsic characteristics of the biodiesels, the respective friction coefficients being μ = 0.0206 for the animal fat and μ = 0.0233 for the soybean biodiesel. The better lubricity of the animal fat biodiesel compared to the soybean observed in microscale is attributed to the presence of sulfur and to the higher amount of mono- and di-glycerides contaminants in it. The polarity and/or chemical affinity of the respective sulfur and OH groups facilitate them to reacting with the steel surfaces during the rubbing action. At nanoscale level, the same ranking in friction is observed among the biodiesels, being that here the friction phenomena are attributed to the cohesive forces other than those related to viscosity.

Suggested Citation

  • Maru, Marcia M. & Almeida, Clara M. & Silva, Rui F. & Achete, Carlos A., 2013. "Assessment of boundary lubrication in biodiesels by nanotribological tests," Energy, Elsevier, vol. 55(C), pages 273-277.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:273-277
    DOI: 10.1016/j.energy.2013.03.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atadashi, I.M. & Aroua, M.K. & Aziz, A. Abdul, 2010. "High quality biodiesel and its diesel engine application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1999-2008, September.
    2. Haseeb, A.S.M.A. & Sia, S.Y. & Fazal, M.A. & Masjuki, H.H., 2010. "Effect of temperature on tribological properties of palm biodiesel," Energy, Elsevier, vol. 35(3), pages 1460-1464.
    3. Anastopoulos, G. & Lois, E. & Karonis, D. & Kalligeros, S. & Zannikos, F., 2005. "Impact of oxygen and nitrogen compounds on the lubrication properties of low sulfur diesel fuels," Energy, Elsevier, vol. 30(2), pages 415-426.
    4. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    5. Xu, Yufu & Wang, Qiongjie & Hu, Xianguo & Li, Chuan & Zhu, Xifeng, 2010. "Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig," Energy, Elsevier, vol. 35(1), pages 283-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maru, Marcia M. & Trommer, Rafael M. & Cavalcanti, Kátia F. & Figueiredo, Elizabeth S. & Silva, Rui F. & Achete, Carlos A., 2014. "The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends," Energy, Elsevier, vol. 69(C), pages 673-681.
    2. Xu, Chengyuan & Yan, Xiaopeng & Kang, Yili & You, Lijun & You, Zhenjiang & Zhang, Hao & Zhang, Jingyi, 2019. "Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir," Energy, Elsevier, vol. 174(C), pages 1012-1025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maru, Marcia M. & Trommer, Rafael M. & Cavalcanti, Kátia F. & Figueiredo, Elizabeth S. & Silva, Rui F. & Achete, Carlos A., 2014. "The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends," Energy, Elsevier, vol. 69(C), pages 673-681.
    2. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    3. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    4. Calero, Juan & Luna, Diego & Sancho, Enrique D. & Luna, Carlos & Bautista, Felipa M. & Romero, Antonio A. & Posadillo, Alejandro & Berbel, Julio & Verdugo-Escamilla, Cristóbal, 2015. "An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1437-1452.
    5. Carlos Luna & Enrique Sancho & Diego Luna & Verónica Caballero & Juan Calero & Alejandro Posadillo & Cristóbal Verdugo & Felipa M. Bautista & Antonio A. Romero, 2013. "Biofuel that Keeps Glycerol as Monoglyceride by 1,3-Selective Ethanolysis with Pig Pancreatic Lipase Covalently Immobilized on AlPO 4 Support," Energies, MDPI, vol. 6(8), pages 1-22, July.
    6. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    7. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    9. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    10. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    11. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    12. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    13. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    14. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    15. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    16. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    17. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    18. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    20. Noraini, M.Y. & Ong, Hwai Chyuan & Badrul, Mohamed Jan & Chong, W.T., 2014. "A review on potential enzymatic reaction for biofuel production from algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 24-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:273-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.