IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp578-585.html
   My bibliography  Save this article

A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry

Author

Listed:
  • Tanaka, Kanako

Abstract

Information on energy consumption and carbon dioxide (CO2) emissions from the iron and steel industry may become important to the assessment of energy saving and the design of emissions trading schemes. This paper focuses monitoring aspects, used two methods to calculate CO2 emission, the European Union Emission Trading Scheme and a method developed by the Japanese Iron and Steel Federation, to investigate the effect of the accounting method on the assessment of energy saving by four model steel mills with different levels of energy efficiency. Depending on the calculation method used, the calculated energy savings and calculated CO2 emissions for a given mill were found to differ from 5% to 15% and 4% to 14% respectively, simply by using different calculation methods. Methodologies that evaluate only CO2 emission and track emissions by process may not fully account for energy saving efforts such as using waste heat, generating power using byproduct gases, and energy management efforts applied over the whole mill rather than on a single process. Points of concern in the iron and steel industry are identified in the areas of calculating energy saving, determining CO2 emissions, and setting benchmarks.

Suggested Citation

  • Tanaka, Kanako, 2012. "A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry," Energy Policy, Elsevier, vol. 51(C), pages 578-585.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:578-585
    DOI: 10.1016/j.enpol.2012.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512007574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
    2. Siitonen, Sari & Tuomaala, Mari & Ahtila, Pekka, 2010. "Variables affecting energy efficiency and CO2 emissions in the steel industry," Energy Policy, Elsevier, vol. 38(5), pages 2477-2485, May.
    3. Tanaka, Kanako, 2008. "Assessment of energy efficiency performance measures in industry and their application for policy," Energy Policy, Elsevier, vol. 36(8), pages 2877-2892, August.
    4. Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    2. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    4. Andreas Schiessl & Richard Müller & Rebekka Volk & Konrad Zimmer & Patrick Breun & Frank Schultmann, 2020. "Integrating site-specific environmental impact assessment in supplier selection: exemplary application to steel procurement," Journal of Business Economics, Springer, vol. 90(9), pages 1409-1457, November.
    5. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    2. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    3. Aristov, Yu.I., 2021. "Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues," Energy, Elsevier, vol. 236(C).
    4. Morfeldt, Johannes & Silveira, Semida, 2014. "Methodological differences behind energy statistics for steel production – Implications when monitoring energy efficiency," Energy, Elsevier, vol. 77(C), pages 391-396.
    5. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.
    6. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    7. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    8. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    9. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    11. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    12. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    13. Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Energy: Resources and Markets 162379, Fondazione Eni Enrico Mattei (FEEM).
    14. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    15. Sergej Vojtovic & Alina Stundziene & Rima Kontautiene, 2018. "The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania," Sustainability, MDPI, vol. 10(2), pages 1-21, January.
    16. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    17. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    18. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    19. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    20. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:578-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.