IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p725-736.html
   My bibliography  Save this article

The effect of air staged combustion on NOx emissions in dried lignite combustion

Author

Listed:
  • Wang, Junchao
  • Fan, Weidong
  • Li, Yu
  • Xiao, Meng
  • Wang, Kang
  • Ren, Peng

Abstract

Experiments were carried out in a multi-path air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of BRXL lignite and its dried coals. The impact of moisture content, multiple air staging, pulverized coal fineness and burnout air position on NOx emissions under deep, middle and shallow air-staged combustion conditions. Moreover, the impact of blending coals on NOx emissions was investigated in this paper. The unburned carbon concentration in fly ash was also tested. Experimental results based on the combustion of BRXL lignite and its dried coals show that NOx emissions can be reduced drastically by air-staged combustion. NOx emissions reduce with the increase of the air that is staged and the distance between the burner and burnout air position. Dried coal of BRXL lignite emits a smaller amount of NOx than that of BRXL lignite. However, the dried degree of BRXL lignite is closely related to R90 fineness. Dried coal with optimal moisture content yields least NOx emissions. When deep or middle staged combustion was adopted, the application of multi-staged combustion is conducive to NOx reduction. However, when shallow staged combustion was adopted, NOx emissions are higher in multi-staged combustion than that in single-staged combustion with MS = 0.54. Thus, the existence of a certain concentration of O2 in reduction zone would significantly reduce NOx emissions. The blending coals that dried coals of BRXL lignite were blended with bituminous coals emit a larger amount of NOx than that of the dried coal alone. NOx emissions decrease with the increase of the proportion of dried coal in the blending coal. Moreover, the unburned carbon concentration in fly ash of dried coal in staged combustion is lower than that of BRXL lignite in staged combustion. On the whole, the dried coal of BRXL lignite is conducive to NOx reduction in staged combustion.

Suggested Citation

  • Wang, Junchao & Fan, Weidong & Li, Yu & Xiao, Meng & Wang, Kang & Ren, Peng, 2012. "The effect of air staged combustion on NOx emissions in dried lignite combustion," Energy, Elsevier, vol. 37(1), pages 725-736.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:725-736
    DOI: 10.1016/j.energy.2011.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Staiger, B. & Unterberger, S. & Berger, R. & Hein, Klaus R.G., 2005. "Development of an air staging technology to reduce NOx emissions in grate fired boilers," Energy, Elsevier, vol. 30(8), pages 1429-1438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
    2. Sha, Long & Liu, Hui & Xu, Lianfei & Cao, Qingxi & Li, Qi & Wu, Shaohua, 2012. "Research on the elliptic aerodynamic field in a 1000 MW dual circle tangential firing single furnace ultra supercritical boiler," Energy, Elsevier, vol. 46(1), pages 364-373.
    3. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    4. Hashimoto, Nozomu & Shirai, Hiromi, 2014. "Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model," Energy, Elsevier, vol. 71(C), pages 399-413.
    5. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Xie, Yiquan & Shao, Yunlin & Zong, Qiudong & Zhang, Qinghua & Zhang, Hao & Zeng, Lingyan & Zhu, Qunyi, 2014. "Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler," Energy, Elsevier, vol. 74(C), pages 775-787.
    6. Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
    7. Cong, Kunlin & Zhang, Yanguo & Han, Feng & Li, Qinghai, 2019. "Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere," Energy, Elsevier, vol. 170(C), pages 840-848.
    8. Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
    9. Han, Xiaoqu & Liu, Ming & Wang, Jinshi & Yan, Junjie & Liu, Jiping & Xiao, Feng, 2014. "Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters," Energy, Elsevier, vol. 76(C), pages 406-418.
    10. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    11. Li, Qingwei & Wu, Jiang & Wei, Hongqi, 2018. "Reduction of elemental mercury in coal-fired boiler flue gas with computational intelligence approach," Energy, Elsevier, vol. 160(C), pages 753-762.
    12. Liu, Ming & Yan, JunJie & Chong, DaoTong & Liu, JiPing & Wang, JinShi, 2013. "Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant," Energy, Elsevier, vol. 49(C), pages 107-118.
    13. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    14. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Kuang, Min & Xu, Guangyin & Lai, Jinping & Wang, Zhenfeng, 2018. "Influence of primary air cone length on combustion characteristics and NOx emissions of a swirl burner from a 0.5 MW pulverized coal-fired furnace with air staging," Applied Energy, Elsevier, vol. 211(C), pages 1179-1189.
    15. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    16. Hashimoto, Nozomu & Watanabe, Hiroaki & Kurose, Ryoichi & Shirai, Hiromi, 2017. "Effect of different fuel NO models on the prediction of NO formation/reduction characteristics in a pulverized coal combustion field," Energy, Elsevier, vol. 118(C), pages 47-59.
    17. Choi, Minsung & Park, Yeseul & Deng, Kaiwen & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2022. "Effects of exhaust tube vortex on the in-furnace phenomena in a swirl-stabilized pulverized coal flame," Energy, Elsevier, vol. 239(PE).
    18. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    19. Ma, Youfu & Yuan, Yichao & Jin, Jing & Zhang, Hua & Hu, Xiaohong & Shi, Dengyu, 2013. "An environment friendly and efficient lignite-fired power generation process based on a boiler with an open pulverizing system and the recovery of water from mill-exhaust," Energy, Elsevier, vol. 59(C), pages 105-115.
    20. Chen, Zhichao & Wang, Zhenwang & Li, Zhengqi & Xie, Yiquan & Ti, Shuguang & Zhu, Qunyi, 2014. "Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios," Energy, Elsevier, vol. 73(C), pages 844-855.
    21. Liu, Guangkui & Chen, Zhichao & Li, Zhengqi & Zong, Qiudong & Zhang, Hao, 2014. "Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler," Energy, Elsevier, vol. 70(C), pages 95-109.
    22. Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.
    2. Robert Wejkowski & Sylwester Kalisz & Mateusz Tymoszuk & Szymon Ciukaj & Izabella Maj, 2021. "Full-Scale Investigation of Dry Sorbent Injection for NO x Emission Control and Mercury Retention," Energies, MDPI, vol. 14(22), pages 1-13, November.
    3. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    4. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Wang, Lin & Chen, Lizhe, 2011. "Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region," Energy, Elsevier, vol. 36(1), pages 258-267.
    5. Cong, Kunlin & Zhang, Yanguo & Han, Feng & Li, Qinghai, 2019. "Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere," Energy, Elsevier, vol. 170(C), pages 840-848.
    6. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    7. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    8. Sha, Long & Liu, Hui & Xu, Lianfei & Cao, Qingxi & Li, Qi & Wu, Shaohua, 2012. "Research on the elliptic aerodynamic field in a 1000 MW dual circle tangential firing single furnace ultra supercritical boiler," Energy, Elsevier, vol. 46(1), pages 364-373.
    9. Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
    10. Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 1206-1213.
    11. Jing, Jianping & Li, Zhengqi & Wang, Lin & Chen, Lizhe & Yang, Guohua, 2011. "Influence of secondary air mass flow rates on gas/particle flow characteristics near the swirl burner region," Energy, Elsevier, vol. 36(5), pages 3599-3605.
    12. Carlo Cravero & Davide Marsano, 2023. "Numerical Simulation of Melted Glass Flow Structures inside a Glass Furnace with Different Heat Release Profiles from Combustion," Energies, MDPI, vol. 16(10), pages 1-16, May.
    13. Liu, Guangkui & Chen, Zhichao & Li, Zhengqi & Zong, Qiudong & Zhang, Hao, 2014. "Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler," Energy, Elsevier, vol. 70(C), pages 95-109.
    14. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    15. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    16. Mohamed Ali Mami & Hartmut Mätzing & Hans-Joachim Gehrmann & Dieter Stapf & Rainer Bolduan & Marzouk Lajili, 2018. "Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor," Energies, MDPI, vol. 11(8), pages 1-21, July.
    17. Fan, Weidong & Li, Youyi & Lin, Zhengchun & Zhang, Mingchuan, 2010. "PDA research on a novel pulverized coal combustion technology for a large utility boiler," Energy, Elsevier, vol. 35(5), pages 2141-2148.
    18. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    19. Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
    20. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:725-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.