IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4505-4517.html
   My bibliography  Save this article

The effect of missing data on wind resource estimation

Author

Listed:
  • Coville, Aidan
  • Siddiqui, Afzal
  • Vogstad, Klaus-Ole

Abstract

Investment in renewable energy sources requires reliable data. However, meteorological datasets are often plagued by missing data, which can bias energy resource estimates if the missingness is systematic. We address this issue by considering the influence of missing data due to icing of equipment during the winter on the wind resource estimation for a potential wind turbine site in Norway. Using a mean-reverting jump-diffusion (MRJD) process to model electricity prices, we also account for the impact on the expected revenue from a wind turbine constructed at the site. While missing data due to icing significantly bias the wind resource estimate downwards, their impact on revenue estimates is dampened because of volatile electricity spot prices. By contrast, with low-volatility electricity prices, the effect of missing data on revenue estimates is highly significant. The seasonality-based method we develop removes most of the bias in wind resource and revenue estimation caused by missing data.

Suggested Citation

  • Coville, Aidan & Siddiqui, Afzal & Vogstad, Klaus-Ole, 2011. "The effect of missing data on wind resource estimation," Energy, Elsevier, vol. 36(7), pages 4505-4517.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4505-4517
    DOI: 10.1016/j.energy.2011.03.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    2. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    3. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    4. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    5. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LM López-Manrique & EV Macias-Melo & KM Aguilar-Castro & I Hernández-Pérez & HP Díaz-Hernández, 2021. "Review on methodological and normative advances in assessment and estimation of wind energy," Energy & Environment, , vol. 32(1), pages 25-61, February.
    2. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    3. Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2018. "Nyquist-based adaptive sampling rate for wind measurement under varying wind conditions," Renewable Energy, Elsevier, vol. 119(C), pages 290-298.
    4. Liu, Ming-Lei & Ji, Qiang & Fan, Ying, 2013. "How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index," Energy, Elsevier, vol. 55(C), pages 860-868.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    2. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    3. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
    4. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    5. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    6. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    7. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    8. Lin, Tyrone T. & Huang, Shio-Ling, 2011. "Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept," Energy Policy, Elsevier, vol. 39(1), pages 408-420, January.
    9. Aïd, René & Li, Liangchen & Ludkovski, Michael, 2017. "Capacity expansion games with application to competition in power generation investments," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 1-31.
    10. Bastian Felix, 2012. "Gas Storage Valuation: A Comparative Simulation Study," EWL Working Papers 1201, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Apr 2014.
    11. Bertolini, Marina & D’Alpaos, Chiara & Moretto, Michele, 2016. "Investing in Photovoltaics: Timing, Plant Sizing and Smart Grids Flexibility," MITP: Mitigation, Innovation and Transformation Pathways 244540, Fondazione Eni Enrico Mattei (FEEM).
    12. Bauner, Christoph & Crago, Christine L., 2015. "Adoption of residential solar power under uncertainty: Implications for renewable energy incentives," Energy Policy, Elsevier, vol. 86(C), pages 27-35.
    13. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    14. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    15. Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
    16. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    17. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    18. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    19. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    20. Siddiqui, Afzal & Takashima, Ryuta, 2012. "Capacity switching options under rivalry and uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 583-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4505-4517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.