IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp860-868.html
   My bibliography  Save this article

How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index

Author

Listed:
  • Liu, Ming-Lei
  • Ji, Qiang
  • Fan, Ying

Abstract

OVX (Crude oil volatility index), as a measure of oil market uncertainty and new volatility derivatives published by CBOE (Chicago Board Options Exchange) during the 2008 global financial crisis, provides a direct prediction of the market's expectation for future 30-day crude oil price volatility. This paper investigates the short- and long-term cross-market uncertainty transmission implied by OVX and other important volatility indices which are VIX (stock market volatility index), EVZ (euro/dollar exchange rate volatility index) and GVZ (gold price volatility index). The results indicate that there are no strong long-run equilibrium relationships among these volatility indices, which indirectly verify the effectiveness of cross-market volatility portfolio strategy for risk hedge. Furthermore, OVX is significantly influenced by other ones, which indicates that investors' volatility expectation in the oil market become more sensitive to uncertainty shocks from other markets when the global economic situation is extremely unstable. Finally, impacts of interior and exterior uncertainty shocks on OVX are found to be positive and transient. And the significant short-term uncertainty transmission between oil and other major markets has been confirmed.

Suggested Citation

  • Liu, Ming-Lei & Ji, Qiang & Fan, Ying, 2013. "How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index," Energy, Elsevier, vol. 55(C), pages 860-868.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:860-868
    DOI: 10.1016/j.energy.2013.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asche, Frank & Oglend, Atle & Osmundsen, Petter, 2012. "Gas versus oil prices the impact of shale gas," Energy Policy, Elsevier, vol. 47(C), pages 117-124.
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. McPhail, Lihong Lu & Babcock, Bruce A., 2012. "Impact of US biofuel policy on US corn and gasoline price variability," Energy, Elsevier, vol. 37(1), pages 505-513.
    4. Malik, Farooq & Ewing, Bradley T., 2009. "Volatility transmission between oil prices and equity sector returns," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 95-100, June.
    5. Jammazi, Rania, 2012. "Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach," Energy, Elsevier, vol. 37(1), pages 430-454.
    6. Chiou, Jer-Shiou & Lee, Yen-Hsien, 2009. "Jump dynamics and volatility: Oil and the stock markets," Energy, Elsevier, vol. 34(6), pages 788-796.
    7. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael & Thompson, Mark A., 2010. "Precious metals-exchange rate volatility transmissions and hedging strategies," International Review of Economics & Finance, Elsevier, vol. 19(4), pages 633-647, October.
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    9. Sari, Ramazan & Hammoudeh, Shawkat & Chang, Chia-Lin & McAleer, Michael, 2012. "Causality between market liquidity and depth for energy and grains," Energy Economics, Elsevier, vol. 34(5), pages 1683-1692.
    10. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    11. Nikkinen, Jussi & Sahlstrom, Petri, 2004. "International transmission of uncertainty implicit in stock index option prices," Global Finance Journal, Elsevier, vol. 15(1), pages 1-15.
    12. Guerrero-Lemus, Ricardo & Marrero, Gustavo A. & Puch, Luis A., 2012. "Costs for conventional and renewable fuels and electricity in the worldwide transport sector: A mean–variance portfolio approach," Energy, Elsevier, vol. 44(1), pages 178-188.
    13. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    14. Krylova, Elizaveta & Nikkinen, Jussi & Vähämaa, Sami, 2009. "Cross-dynamics of volatility term structures implied by foreign exchange options," Journal of Economics and Business, Elsevier, vol. 61(5), pages 355-375, September.
    15. Mahmod Qadan & Joseph Yagil, 2012. "Fear sentiments and gold price: testing causality in-mean and in-variance," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 363-366, March.
    16. Cheung, Yin-Wong & Yuen, Jude, 2002. "Effects of U.S. Inflation on Hong Kong and Singapore," Journal of Comparative Economics, Elsevier, vol. 30(3), pages 603-619, September.
    17. Recalde, Marina & Ramos-Martin, Jesús, 2012. "Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina," Energy, Elsevier, vol. 37(1), pages 122-132.
    18. Hung, Jui-Cheng & Yi-Hsien Wang, & Chang, Matthew C. & Shih, Kuang-Hsun & Hsiu-Hsueh Kao,, 2011. "Minimum variance hedging with bivariate regime-switching model for WTI crude oil," Energy, Elsevier, vol. 36(5), pages 3050-3057.
    19. Yue Peng & Wing Ng, 2012. "Analysing financial contagion and asymmetric market dependence with volatility indices via copulas," Annals of Finance, Springer, vol. 8(1), pages 49-74, February.
    20. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    21. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    22. Arouri, Mohamed El Hedi & Lahiani, Amine & Nguyen, Duc Khuong, 2011. "Return and volatility transmission between world oil prices and stock markets of the GCC countries," Economic Modelling, Elsevier, vol. 28(4), pages 1815-1825, July.
    23. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    24. Sari, Ramazan & Soytas, Ugur & Hacihasanoglu, Erk, 2011. "Do global risk perceptions influence world oil prices?," Energy Economics, Elsevier, vol. 33(3), pages 515-524, May.
    25. Chen, Hsuan-Chi & Chung, San-Lin & Ho, Keng-Yu, 2011. "The diversification effects of volatility-related assets," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1179-1189, May.
    26. Kent Wang, 2009. "Volatility linkages of the equity, bond and money markets: an implied volatility approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(1), pages 207-219, March.
    27. Coville, Aidan & Siddiqui, Afzal & Vogstad, Klaus-Ole, 2011. "The effect of missing data on wind resource estimation," Energy, Elsevier, vol. 36(7), pages 4505-4517.
    28. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    2. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    3. Dutta, Anupam & Nikkinen, Jussi & Rothovius, Timo, 2017. "Impact of oil price uncertainty on Middle East and African stock markets," Energy, Elsevier, vol. 123(C), pages 189-197.
    4. Zhifang He & Jiaqi Chen & Fangzhao Zhou & Guoqing Zhang & Fenghua Wen, 2022. "Oil price uncertainty and the risk‐return relation in stock markets: Evidence from oil‐importing and oil‐exporting countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1154-1172, January.
    5. repec:ipg:wpaper:2014-442 is not listed on IDEAS
    6. Yau, Hwey-Yun & Nieh, Chien-Chung, 2006. "Interrelationships among stock prices of Taiwan and Japan and NTD/Yen exchange rate," Journal of Asian Economics, Elsevier, vol. 17(3), pages 535-552, June.
    7. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    8. Coskun, Merve & Taspinar, Nigar, 2022. "Volatility spillovers between Turkish energy stocks and fossil fuel energy commodities based on time and frequency domain approaches," Resources Policy, Elsevier, vol. 79(C).
    9. Karanfil, Fatih, 2009. "How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools?," Energy Policy, Elsevier, vol. 37(4), pages 1191-1194, April.
    10. Chien-Chiang Lee & Chun-Ping Chang, 2006. "The Long-Run Relationship Between Defence Expenditures And Gdp In Taiwan," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(4), pages 361-385.
    11. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    12. Huszár, Zsuzsa R. & Kotró, Balázs B. & Tan, Ruth S.K., 2023. "Dynamic volatility transfer in the European oil and gas industry," Energy Economics, Elsevier, vol. 127(PA).
    13. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Spillovers between oil and stock markets at times of geopolitical unrest and economic turbulence," MPRA Paper 59760, University Library of Munich, Germany.
    14. Supachok Thakolsri & Yuthana Sethapramote & Komain Jiranyakul, 2016. "Implied Volatility Transmissions Between Thai and Selected Advanced Stock Markets," SAGE Open, , vol. 6(3), pages 21582440166, July.
    15. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    16. Martin Gürtler, 2015. "Poptávka po reálných peněžních zůstatcích v ČR a její determinanty [Demand For Real Money Balances in the Czech Republic and its Determinants]," Politická ekonomie, Prague University of Economics and Business, vol. 2015(5), pages 570-602.
    17. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    18. Ipsita Saishree & Puja Padhi, 2022. "Exploring the dynamics of the equity–commodity nexus: A study of base metal futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1573-1596, August.
    19. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    20. Lee, Chien-Chiang & Chien, Mei-Se, 2010. "Dynamic modelling of energy consumption, capital stock, and real income in G-7 countries," Energy Economics, Elsevier, vol. 32(3), pages 564-581, May.
    21. Mensi, Walid & Alomari, Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Extreme quantile spillovers and connectedness between oil and Chinese sector markets: A portfolio hedging analysis," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:860-868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.